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We derive hydrodynamic equations for systems not in local thermodynamic 
equilibrium, that is, where the local stationary measures are "non-Gibbsian" 
and do not satisfy detailed balance with respect to the microscopic dynamics. As 
a main example we consider the driven diffusive systems (DDS), such as electri- 
cal conductors in an applied field with diffusion of charge carriers. In such 
systems, the hydrodynamic description is provided by a nonlinear drift-diffusion 
equation, which we derive by a microscopic method of nonequilibrium distribu- 
tions. The formal derivation yields a Green-Kubo formula for the bulk diffusion 
matrix and microscopic prescriptions for the drift velocity and "nonequilibrium 
entropy" as functions of charge density. Properties of the hydrodynamic equa- 
tions are established, including an "H-theorem" on increase of the thermo- 
dynamic potential, or "entropy," describing approach to the homogeneous 
steady state. The results are shown to be consistent with the derivation of the 
linearized hydrodynamics for DDS by the Kadanoff-Martin correlation-func- 
tion method and with rigorous results for particular models. We discuss also the 
internal noise in such systems, which we show to be governed by a generalized 
fluctuation-dissipation relation (FDR), whose validity is not restricted to thermal 
equilibrium or to time-reversible systems. In the case of DDS, the FDR yields 
a version of a relation proposed some time ago by Price between the covariance 
matrix of electrical current noise and the bulk diffusion matrix of charge density. 
Our derivation of the hydrodynamic laws is in a form--the so-called "Onsager 
force-flux form" which allows us to exploit the FDR to construct the Langevin 
description of the fluctuations. In particular, we show that the probability of 
large fluctuations in the hydrodynamic histories is governed by a version of the 
Onsager "principle of least dissipation," which estimates the probability of fluc- 
tuations in terms of the Ohmic dissipation required to produce them and 
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provides a variational characterization of the most probable behavior as that 
associated to least (excess) dissipation. Finally, we consider the relation of long- 
range spatial correlations in the steady state of the DDS and the validity of 
ordinary hydrodynamic laws. We also discuss briefly the application of the 
general methods of this paper to other cases, such as reaction-diffusion systems 
or magnetohydrodynamics of plasmas. 

KEY WORDS: Hydrodynamics; fluctuations; nonequilibrium systems; driven 
diffusive systems; reciprocity relations. 

1. I N T R O D U C T I O N  

1.1. Descript ion of the Program 

This paper describes an approach to the derivation of hydrodynamic 
equations--including also the fluctuations around the deterministic 
behavior due to internal "molecular" noise--for microscopic interacting 
particle systems. The method is quite general, but particular attention is 
given to cases where the system is not locally in thermodynamic equi- 
librium. 

By "local equilibrium" we mean here that the system may be divided 
into cells small on the macroscopic scale but each containing a large num- 
ber of molecules whose statistics are described by the equilibrium distribu- 
tions (classical or quantum) of Gibbs. Many nonequilibrium phenomena 
commonly encountered are in this class, including ordinary hydrodynamics 
of fluids, heat conduction, Fickian diffusion of solutes, etc. Nonequilibrium 
situations of this kind generally occur either through the relaxation of 
imposed initial inhomogeneities of hydrodynamic densities or through the 
imposition of steady nonuniform thermodynamic potentials on the boun- 
daries. Therefore, even if very large overall departures of the system from 
equilibrium occur, the small local regions are well described to lowest order 
in gradients by a Gibbs distribution with parameters slowly varying across 
the system. Thermohydrodynamic fluid flow in B6nard cells is, for the con- 
vective regime with a large temperature difference, a standard example 
which is globally far from equilibrium. 

Nevertheless, there is another large class of nonequilibrium systems, 
e.g., those locally driven by external fields, which can have statistics in 
small cells strongly deviating from those of Gibbs. In such cases, there may 
still be a hydrodynamic behavior associated to locally stationary states with 
slowly varying parameters, in which homogeneous, stationary measures of 
the driven dynamics, generally non-Gibbsian, play the role of equilibrium 
states. Examples of this sort include charge diffusion in semiconductors 
under applied electric fields, chemical reaction-diffusion processes with a 
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local supply of reagents, magnetohydrodynamics of driven plasmas, etc. 
A crucial feature of these systems is that the local stationary measures are 
nonreversible, i.e., they do not satisfy detailed balance with respect to the 
dynamics. Far less is known for these systems than for the local equilibrium 
ones. For example, there is no generally accepted prescription for the noise 
strength in a Langevin equation to describe the fluctuations around such a 
state, such as the fluctuation-dissipation relation of equilibrium systems. 

The method we use here to derive the hydrodynamic laws is a for- 
malism based upon nonequilibrium distributions which has been pioneered 
and applied by a number of authors, particularly Mori, (1) Zubarev,(2) and 
McLennan, ~3~ among others. We may mention also the work of Sinai, ~4~ 
who made such techniques the basis of an attempt to derive rigorously the 
Euler hydrodynamic equations of one-dimensional Hamiltonian particle 
systems. Eyink 15'6~ has reviewed this method for local-equilibrium states of 
classical Hamiltonian or quantum dynamics with conservation laws. The 
objective there was to discuss the mathematical foundations of the method 
and to clarify the conditions required for a hydrodynamic description to be 
valid: the separation of scales, dynamical properties of ergodic type, etc. 
Here let us just say that the nonequilibrium distribution itself is a rigorous 
formula of Gibbs exponential type for a time-evolved local equilibrium dis- 
tribution, a kind of "Girsanov formula" for the density with respect to a 
homogeneous reference measure. It is a suitable object for subsequent for- 
mal expansion in the small ratio-of-scales parameter e, which yields the 
constitutive laws for fluxes and the hydrodynamic equations. 

We shall discuss in this work the extension of this approach to systems 
without local equilibrium. In particular, we will discuss the new features 
that appear with local stationary measures of non-Gibbsian type and 
attempt to formulate explicitly the assumptions under which the deriva- 
tions are obtained. Our method is constructive, since we introduce basic 
quantities that appear in the hydrodynamic laws by formally exact 
microscopic expressions which are calculable (in principle) analytically 
and (in practice) by molecular dynamics. These quantities are (i) a non- 
equilibrium entropy, or a "fundamental equation" for the entropy as func- 
tion of the hydrodynamic densities, expressed as a suitable large-volume 
limit, (ii) drift (or, convection) velocities as stationary averages of 
microscopic currents, and (iii) Onsager relaxation coefficients or transport 
coefficients, given by Green-Kubo formulas in terms of the microscopic 
dynamics. 

From these microscopic quantities we construct also the statistical 
theories of fluctuations about the deterministic hydrodynamic behavior. It 
is possible to develop a nonequilibrium distribution method based upon 
the microscopic probability conservation for the empirical distributions 
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(a "level-2" approach) adequate to derive a hydrodynamic Fokker-Planck 
equation for the fluctuations. 4 This was done some time ago for local-equi- 
librium systems by Zubarev and Morozov, ~v~ applying a general method of 
Zwanzig/81 However, we shall follow here a more economical procedure. In 
fact, it is an important principle of statistical physics, emphasized by 
Einstein ~9~ and Onsager, ~1~ that fluctuations are determined by hydro- 
dynamics, so that a derivation of the latter also suffices to prescribe the 
distribution law of fluctuations. In the present context this connection is 
given by a (generalized)fluctuation-dissipation relation which we derive. 
For the small fluctuations described by a linear Langevin equation, the 
stationary distribution must be calculated to an approximation including 
correlations in the steady state. For large deviations an "Onsager-Machlup 
action" functional is constructed which gives the probability of spontaneous 
fluctuations of the hydrodynamic histories, and which yields automatically 
a variational principle for the most probable behavior, a version of 
Onsager's "least-dissipation principle." 

1.2. Driven Diffusive Systems 

As a main example of the formalism, we discuss in the text the driven 
diffusive systems (DDS), and only consider other concrete areas of applica- 
tion in the conclusion section. The DDS have a long history in statistical 
physics, going back at least to the 1951 work of Wannier based upon a 
Boltzmann transport equation/1'' ,21 Studying gaseous ionic conductors in 
a strong electric field, Wannier observed that inhomogeneities of charge 
density imposed upon the current-carrying state slowly spread about their 
drift displacement. He showed that the diffusion concept is still applicable 
in the nonequilibrium system and was able to calculate the diffusion tensor 
for the driven state. There is a broad class of physical situations in nature 
which exhibit a similar behavior. Certainly the technologically most impor- 
tant examples are the inhomogeneous semiconductor devices, such as the 
well-known P-N diode, which constitute an active field of research in con- 
densed matter physics, electrical engineering, and applied mathematics: see 
ref. 13 for a nice, up-to-date account. Other physical examples include elec- 
trolyte solutions, certain solid electrolytes, and magnetohydrodynamics of 
plasmas. 

4The "empirical distribution" in this method is just the delta distribution J ' [p]  = 
l - [ r~(p(r ) -~(r ) ) ,  supported on the density function of the n-body system, /~(r)= 
~7~ ~ f i ( r - r j ) .  The latter is the "empirical density," or level-I object. It is easy to check that 
the empirical distribution evolved under the microscopic dynamics satisfies a continuity 
equation of the form ~,f,[p]+Idr[~/~p(r)] J , [ r , p ] = 0 .  When this is averaged with 
respect to a suitable ensemble of initial conditions, the Fokker-Planck equation results. 
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Most of the past work on these systems started from a kinetic equa- 
tion description. This should be adequate at a low density of charge 
carriers, but will fail for higher concentrations. More importantly, beginn- 
ing with the kinetic Boltzmann level omits consideration of fundamental 
issues of statistical physics for such systems. Therefore, we study here 
instead a fully microscopic system, a lattice gas with Kawasaki-type 
stochastic dynamics, which was introduced earlier ~4~ as a model of fast 
ionic conductors. This so-called driven lattice gas or DLG model of a 
driven-diffusive system has several advantages for our purposes. First, its 
simple dynamical rules are ideal for computer realization and have allowed 
large-scale simulations to be performed, revealing a wealth of unexpected 
phenomena. For a review of these and a survey of present theoretical 
understanding, see the recent article of Schmittmann and Zia. ~5~ In addi- 
tion, there are for particular simple cases of DLG models rigorous results 
with which to compare our theory, e.g., see ref. 16 and our Appendix C. 
Such checks are important because the methods we use are formal and the 
physics is largely unexplored, so that corroboration by rigorous results is 
very reassuring when it is available. There are many deficiencies of the 
D L G models as a realistic portrayal of nature ~3~ and one may expect 
technical problems in extending our treatment to real systems with long- 
range Coulombic interactions. We believe that the difficulties already pre- 
sent at this stage justify their removal until a later time. 

The DLG models were defined in the paper of Katz et al. (KLS) ~41 
and discussed systematically in Chapter 4 of ref. 20. Here we just recall that 
particles in the model hop on a simple hypercubic lattice Z d in d dimen- 
sions with a hard-core exclusion condition (at most one particle per site). 
The particles are subjected to driving by an external electric field E and 
confined to a box A c Z a with periodic boundary conditions. The 
stochastic hopping is "thermally activated" by a heat reservoir at inverse 
temperature fl = 1/kB T, which absorbs the Ohmic power produced by the 
field. More mathematically, the state space of the system is the set of all 
possible particle configurations r /= (r/x: x e A}, where r/x is the site occupa- 
tion variable 

{~ if x ~ A is occupied 
t/x = if x~  A is empty ( 1.1 ) 

The dynamics is prescribed by the exchange rates cE(x, y, ~1)/>0 between 
pairs of sites x, y ~ A. Letting t/Xy denote the configuration with occupations 
at sites x and y interchanged, the time evolution of a probability distribu- 
tion P,(r/) is given by the master equation 
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d P,(r/)= 1 r/XV ) dt 2 ~ {cE(x' y' " P'(r/"Y)-eE(x, y, r/) P,(r/)} 
x, y E A  

- L~,AP,(r/)  (1.2) 

The exchange rates are assumed, for simplicity, to be only nearest 
neighbor, i.e., ce(x ,  y, r / )=0 for Ix-Yl  > 1. It is also useful to assume 
that cE(x ,y , r / )>0  for l x - y l - 1  and r/x:#r/y, to avoid degeneracies. 
Another natural condition is space homogeneity, guaranteed by invariance 
of the rates under translation, i.e., cE(x + a, y + a, aar/) = e~(x, y, r/), where 
(aa 11) x = 1/~_ ,I rood 111 is the periodically shifted configuration. Finally, and 
most importantly, we impose local detailed balance with respect to a lattice- 
gas Hamiltonian H(r/) including the work done by the electric field E in the 
jump. This has the form 

cE(x, y, r/)= cE(x, y, qxy) exp{ -- f lEH(q Xy - H ( r / )  ] } 

x exp[ - q f l E .  (x - y)(r/x - r/y)] (1.3) 

where q is the particle charge and H(r/) is the Hamiltonian. For example, 
H could be chosen as the Ising model Hamiltonian 

- J  
H(r/) = 2 Z r/,, r/y 

x. y E A ,  I x - - Y l = l  

If E = 0, then this is the usual condition of detailed balance, which implies 
stationarity and reversibility of the Gibbs measure P ~ e -pH for the 
dynamics. For any value of field E and number of particles N the dynamics 
has a unique stationary measure PE, N,A in the periodic domain A. 
However, if E =/: 0, then the measure PE, N, ,1 supports a finite mean current 
and is nonreversible. 

In this work we shall consider the hydrodynamic description of the 
relaxation of an inhomogeneous but slowly varying distribution of charge 
p(ex) in the large domain E-IA for e ~ 0 .  This is equivalent to the situa- 
tion with a smooth distribution of charge p(r) in the fixed domain A as the 
lattice spacing �9 0. We shall derive a diffusion equation with drift to 
describe the relaxation of this charge density on a macroscopic time scale 
r ~ � 9  i t, of the form 

O~p(r, r ) =  - V .  [](p(r, r ) ) -  �9 z)). Vp(r, r)] (1.4) 

in which the drift current is given at low fields by Ohm's law as 
] ( p ) = e ( p ) . E .  It differs primarily from the "drift-diffusion equation" of 
semiconductor physics (13) in containing just one sign of charge and in 
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lacking the terms describing recombination and generation of electron-hole 
pairs. Microscopic expressions for the quantities appearing in the equation 
will be one output of our derivation, as well as results for its solutions such 
as an "H-theorem," etc. It will be a chief concern of this paper to stress the 
statistical and dynamical conditions underlying the validity of the equation. 
Such properties are commonly assumed in the distribution function deriva- 
tions of hydrodynamics, but ordinarily only implicitly. This is particularly 
important for DDS since the conditions may even be violated there! 

A second main problem addressed in our work is the theory of fluctua- 
tions for these same systems. It might be expected from analogy with other 
hydrodynamic systems that the fluctuations in the charge density will be 
described by adding to the conservation law a "noisy current," as 

O~p(r, r ) =  -V-[](p(r, r ) ) -  eD(p(r, r)). Vp(r, r ) +  ed/2j'(r, 3)] (1.5) 

In local equilibrium systems such fluctuating hydrodynamics has been long 
used, with the stochastic current j' distributed according to a "fluctuation- 
dissipation relation." We shall show that even for irreversible systems 
such as the DDS there is a generalized fluctuation-dissipation relation. 
Furthermore, our derivation of the hydrodynamics is in a form (so-called 
force-flux form) which allows us to exploit the FDR to write down directly 
the Langevin equation for fluctuations. 

Although the DLG models are our primary example, our methods are 
not at all restricted to that context and there is little difficulty in extending 
them to microscopic particle systems governed by classical Hamiltonian or 
quantum dynamics. In fact, Zubarev and his collaborators have for some 
years employed similar methods to derive results for physical nonequi- 
librium systems, including those without local equilibrium. For example, 
see the early work of Kalashnikov on hot electron kinetics in semicon- 
ductors. <~8~ At least in one simple deterministic model of DDS type--the 
Lorentz gas with applied field and "Gaussian" thermostat--the program 
we outline can be carried through in a mathematically rigorous way to 
derive Ohm's law of charge transportJ ~9~ 

1.3. Out l ine  of  the  W o r k  

The remainder of this paper is organized as follows: 
In Section 2 we give our derivation of the hydrodynamic law. We start 

with some preliminaries on the thermodynamics of the stationary non- 
Gibbsian states of the dynamics. Thereafter, we derive the nonequilibrium 
distribution formula, which is an exact and rigorously valid expression for 
a time-evolved local-equilibrium measure. Using this formula as the starting 
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point, we derive the constitutive laws for fluxes and the hydrodynamic 
equations by formal expansions in the separation of scales parameter e. 
The perturbation expansions are based upon an asymptotic method ~t la 
Chapman-Enskog, exploiting the "normal form" of the nonequilibrium dis- 
tribution. Mathematical rigor is lost at this stage and various approxima- 
tions, e.g., neglect of memory effects, are made which lack justification and 
may even prove false for certain applications. However, we find the results 
to agree with the recent rigorous theorems of Esposito et al. cl6~ and 
Landim et al. (lTJ for a simple example, the asymmetric simple exclusion 
process (ASEP). I ~61 We conclude this section by discussing linear transport 
near E = 0 including consequences of reversibility, the celebrated Onsager 
reciprocal relations. 

In Section 3 we turn our attention to the theory of internal noise for 
these systems at the linear level, i.e., for small fluctuations about the steady 
state. We derive the fluctuation-dissipation relation and emphasize the 
important fact that it is a macroscopic relation independent of many details 
of the particle system, such as microscopic reversibility. In particular, we 
obtain in this way a form of the generalized Einstein relation for DDS 
proposed in 1965 by Price, ~2j~ which relates the covariance of micro- 
scopic current fluctuations and the bulk diffusion tensor of charge 
inhomogeneities. Calculating the steady state accurately to a Gaussian 
approximation, correctly incorporating the steady-state two-point spatial 
correlations, we can use it to write down the linear Langevin equation for 
small fluctuations. An alternative approach to deriving the linearized 
hydrodynamics can be based upon this theory--the "correlation function 
method" of Kadanoff and Martini 22" ~_31 This method was already employed 
in the 1984 paper of KLS and we show that the results are consistent 
with those of the present approach. However, we also show that the 
phenomenon of long-range power-law decay of static correlations in the 
DLG models poses some severe difficulties for the derivation of 
hydrodynamic laws in these systems. 

Section 4 extends some of these results to the case of large fluctuations 
described by a nonlinear Fokker-Planck equation. In this context there is 
an FDR, due in a general form to Graham, ~24~ which allows us likewise to 
write down directly the Fokker-Planck equation for the distribution of the 
fluctuating density field. It will hold under the same assumptions which 
justify the hydrodynamic law itself. In the limit E--, 0 the probability of 
large fluctuations is exponentially small and a precise asymptotic formula 
for the decay exponent can be derived by steepest descent from a path- 
integral solution of the Fokker-Planck equation. This is also a procedure 
pioneered by Graham. ~25~ The result has the form of a nonlinear Onsager- 
Machlup action. Its physical interpretation is as an excess dissipation 
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function and it leads to a variational characterization of the most probable 
behavior as the state of least excess dissipation. 

Our concluding remarks are in Section 5, where we consider general- 
izations and limitations of the formalism. Some material subsidiary to the 
main discussion is collected in various appendices. 

2. N O N E Q U I L I B R I U M  D I S T R I B U T I O N S  A N D  
H Y D R O D Y N A M I C  LAWS 

2.1. Nonequi l ibr ium Thermodynamics  of Driven Steady States 

As a necessary preliminary to the discussion of hydrodynamics and 
fluctuations, we must first address a different issue, the nonequilibrium 
thermodynamics of the DLG models, which involves the large-volume limit 
A + oo of its stationary, translation-invariant measures. Thermodynamics 
plays a crucial role in the distribution function method, since generally in 
this method the hydrodynamic density n is spatially modulated by the 
imposition of a local chemical potential 2. It is therefore required to specify 
a functional relationship, ). =2(n)  of the chemical potential to produce a 
given density n. The traditional nonequilibrium thermodynamic description 
of electrical conducting systems postulates a local "free energy function" 
f(fl ,  1l), in terms of which an "electrochemical potential" may be defined by 
the isothermal derivative: 

Of) (2.1) 
I t =  ~ l~ 

See Landau and Lifshitz, aT~ Sections 25-26. Such a description is 
appropriate for a system in contact with a heat bath at inverse temperature 
ft. Alternatively, a "nonequilibrium entropy" density s(u,n) may be 
employed which is a function of internal energy u, as in de Groot and 
Mazur, m~ Chapter XIII, 3d, and Callen, a9~ Chapter 17. These functions 
are presumed to have also the relation to microscopic fluctuations 
proposed by Einstein for thermal equilibrium, t9~ Namely, the probability to 
observe the density 17 in a large volume A should be proportional to 
~exp [  IAI �9 s(u, n ) / k d ,  with ks the Boltzmann constant, m'29~ This aspect 
of the thermodynamic functions will play an important role in our discus- 
sion of fluctuations in the DDS. 

However, except for E = 0 or for special choices of the rates in d = 1, 
the stationary measures of the DLG models are not Gibbs measures 
cc e-Pn with respect to the a priori Hamiltonian H appearing in the defini- 
tion of the dynamics. (It is an open question, discussed in Appendix A, 
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whether they are also not Gibbs for any other Hamiltonian, or, more 
technically, not Gibbs probability measures for any summable potential. 126~ 
Therefore, standard proofs of the infinite-volume limit and of the validity 
of thermodynamic formalism for Gibbs measures do not obviously apply. 
Furthermore, although the stationary measures of the DLG for fixed den- 
sity are expected to be space-ergodic, they have been observed numerically 
to have a very slow power-law decay of correlations for all temperatures 
and densities when E r rather than the exponential clustering exhibited 
in Gibbs measures away from critical pointsJ 3m This means that much of 
the standard lore of equilibrium thermodynamics has no sound mathemati- 
cal foundation for driven steady states. The present section will review 
what little is known concerning the stationary measures of the DLG in 
infinite volume, and, in particular, will attempt to systematize the standard 
hypotheses on thermoelectric systems 127-29) in the context of the DLG 
models. All of our discussion will be confined to the high-temperature 
region of those models. As for the Ising-type lattice gas at E = 0, a second- 
order transition appears to occur at some critical To, below which there is 
a two-phase coexistence region for "liquid" and "gas" phases with different 
densities. In this work, we stay well away from the critical point and 
coexistence regions. 

For finite A, the basic facts about stationary measures are quite 
straightforward to establish. Because the number of particles N is conserved, 
there is a stationary distribution satisfying 

Le, APe.~r.A=O (2.2) 

for each N =  0, 1 ..... ]A[. Since the jump rates are nondegenerate, these are 
unique, and the theory of finite-state Markov chains ensures an exponential 
approach to stationarity. Pe, N,A must inherit the symmetries of the 
dynamics; for example, it is invariant under (periodic) translations: 

Pe, N. A(cr, r/) = Pz, ~v. A(r/) (2.3) 

The zero-field measure P0. N, a is the canonical equilibrium state, but no 
explicit expression is generally available for Pc. ~, n, which is defined only 
implicitly by Eq. (2.2). The states with El=0 will support a nonvanishing 
number current of charge carriers 

j(E) = ( j z ( x ) )  E, N, A =~0 (2.4) 

where the ruth vector component of the current, 

Je, . ,(x, q) = c~(x,  x + ~., ,  ~7)(qx - ~x +~.,) (2.5) 
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is the expected jump rate from x to x + ~,, conditioned on being in the con- 
figuration r/.. 

However, very little is rigorously known about the stationary states of 
the DLG dynamics for the limit A T z (  Therefore, we shall proceed by 
making plausible hypotheses. It seems reasonable to believe that a (weak) 
limit exists, 

P e ,  = w -  lim PE U a (2.6) 
�9 A t Z ' t  ' ' 

when the density nA = N/IAI is selected so that 

lim nA=n (2.7) 
A T z  a 

Existence of limits along suitable subsequences follows from a compactness 
argument, but one believes that the limit is, in fact, independent of the 
choice of subsequence. The limit point Pc,,, is a translation-invariant prob- 
ability measure on the infinite-volume configuration space/2 = { 0, 1 } z~. It 
is also stationary under the infinite-volume version of the DLG dynamics, 
i.e., it satisfies 

<LEf>E.,, = 0 (2.8) 

for any local function f(q) depending upon a finite number of occupation 
numbers with 

LEf(,?) = �89 ~,, cE(x, y, r/)[f(r/ 'y) --f(r/)] (2.9) 
x .  y E Z  d 

Furthermore, the measures PE, ,, will presumably be the unique stationary, 
homogeneous measures of the dynamics for each fixed density ,7. 

The fundamental hypothesis we will need in our later development is 
the following: for any subset A c Z d, define the empirical density nA(~) as 

N,,(~/) 
nA( r / )  - 

I11 
1 

= ~, q~ (2.10) 
IAI .,~A 

Our basis assumption is then as follows. 

Hypothes i s  1. There exists, for a chosen "reference density" 
,7* �9 [0, 1] (say, ,2* = 1/2), a concave function se: [0, 1] ~ [ - o o ,  0] such 
that, for any of the intervals J =  [a, b], (a, b], [a, b), (a, b) c [0, 1 ], 

lim ~ log PE ,.{nA �9 J} = sup SF_(n) (2.1 1 ) 
A r z ~  IAI " , , ~  
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Mathematically, this is an assumption of large-deviations type. 132~ Our 
fundamental hypothesis has not been rigorously established up until now 
for the stationary measures Pe.,* of the DLG dynamics with E-r 0. Such 
a result has been proved for invariant measures of nonconservative, so- 
called "attractive" interacting particle systems on g2, for which an FKG 
property is satisfiedJ 3~ The result means, heuristically, that 

PE.,,,{nA ~n} ~exp[  IAI .s~(n)] (2.12) 

and the function sE plays the same role as the entropy function in the 
Einstein formula for equilibrium fluctuationsJ 9~ For this reason, we refer to 
se(n) as the nonequilibrium entropy, or to s=sE(n) as the fundamental 
equation in the language of Callen. 129~ It would be more appropriate to use 
the notation sE(n, fl), but we shall not generally make the temperature 
dependence explicit. The physical interpretation will be discussed further 
below. 

It is a consequence of Hypothesis 1 that the limit 

lim 1 Iog(exp(2N~j))E.,,.=pE(2) (2.13) 
ATZO IA] 

exists for all real 2, and that 

pE(2)= sup (2n+sE(n))  (2.14) 
n~ [0. 1] 

This follows from Varadhan's theorem on asymptotics of integrals (e.g., see 
Section II.7 of ref. 32). In particular, the "pressure function" pE(2) is 
convex in 2. Because sE(n) was assumed to be concave, it follows that it is 
conjugate to PE in the sense that 

sE(n)= inf (pE(2 ) -2n )  (2.15) 
2 ~ R  

and, furthermore, the derivative 

2E(n) = - s~(n) (2.16) 

exists except possibly at a countable set of points in [0, 1]. For fl small 
enough (or for temperature high enough), the function sE is expected to be 
strictly concave as a function of density. Therefore, the derivative 
hE(2) =p~(2)  will exist for every 2eR.  
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The latter fact has an important consequence. Let P*,A be the 
marginal measure induced by Pe. ,,* on DA = {0, 1 } A. Then, we may define 
an "exponential family" of measures P *  A. ~. on DA by 

1 
P}.A.~(~) - - e x p [ 2 N A ( g ) ]  * P~A(q) (2.17) 

Z~A(2) 

with 

Ze. A(2)= (exp(2NA))  E... (2.18) 

Because of the differentiability ofpE,  it can be shown that, for every �9 > 0, 

lim P* A ).{InA--ne(2)l <e}  = 1 
A T Z  a - '  ' 

(2.19) 

(For  example, see Lemma VII.4.2 in ref. 32.) In other words, the empirical 
density hA(q) distributed with respect to the measure P*.A.~ takes on the 
value nearly equal to he(2) with overwhelming probability in a large 
region A. Under our assumptions it is possible to show even a little more, 
namely, that the large-deviations hypothesis made for the single reference 
density n* in fact implies the same property for the exponential modifica- 
tions: 

1 , 
lim - -  log PE .~ ~{ n A �9 J} = sup se(nl2)  (2.20) 
ATz" Ial ' ' ,,~s 

with 

sE(n [ 2) = sE(n) + 2n --pE(2) (2.21) 

For  example, see Theorem 3 in ref. 31. This implies that for any choice of 
reference density n, Hypothesis 1 should hold for the measure Pe,,, also 
with "entropy function" sE(-[2e(n)).  

The main point we wish to stress here is that, assuming only existence 
and concavity of se, it is possible to change the density to any desired 
value 17 by making the exponential modification with the chemical potential 
2 = - s ~ ( n )  of the reference measure. In particular, there is no need to 
assume the stationary measure to be Gibbsian for this procedure to be 
valid. Unfortunately, while the use of the chemical potential as in Eq. (2.17) 
to change the density from n* to n appears reasonable, it is not necessarily 
the "correct" method. One can argue that, since the number NA(r/) of par- 
ticles in a large volume A is conserved up to flux across the boundary, the 
members of the exponential family in Eq. (2.17) will be nearly stationary 
for a long time interval. In fact, it is to be expected that 
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Pe  ,,E~;.~ = w - lim P*  A ). (2.22) 
�9 A T Z a ' ' 

so that the (presumably unique) stationary measures Pc,,, with other den- 
sities n # n *  ought to be recoverable from the infinite-volume limits of 
P$, A, ;~ with 2 = -s~r(n). In the general context there is little we can say on 
this point, but for the specific case of the DLG models we can go a little 
further. It is shown in Appendix B that, under the assumption that one of 
the stationary measures of the DLG model is canonical Gibbs with a 
suitable Hamiltonian, then any of its ergodic, invariant measures is Gibbs 
for the same Hamiltonian and for a certain choice of chemical potential. 
The proof depends upon the extension of a result of Kfinsch ~33J for 
stochastic spin-flip dynamics to our conservative models (due to A. 
Asselah), which states that if any translation-invariant, stationary measure 
of the DLG is canonical Gibbs with some Hamiltonian, then all of them 
are canonical Gibbs with the same Hamiltonian. Of course, this does not 
settle the issue even for the DLG,  since the invariant measures may well 
not be Gibbs. However, it does give some firmer dynamical grounds to our 
procedure. In general, our method must be judged solely on the basis of its 
results. 

The concavity part of our hypothesis may be regarded as a kind of 
"stability assumption" on the stationary measures PE,,,. For example, it 
implies that X~ 1 =02E/On = - d 2 s E / d n 2 >  O. Therefore, an increase in the 
"potential" 2 is required to raise the density n. Also, if the fluctuation for- 
mula analogous to Eq. (2.12) is considered for Pe, , , - -which follows from 
the analog of Eq. (2.20)--then in a quadratic approximation 

Pe.,,{nA ~ n'} ~ exp[ --IAI '  x~(n)(n' - n)Z/2] (2.23) 

and the probabilities of spontaneous fluctuations of the density away from 
n are damped out. Concavity of the entropy also implies heuristically a 
stability property in the coupling of systems in two large regions A~, Az 
both distributed according to the measure PE.,,. The two systems are 
imagined to be coupled at a common boundary in an arbitrary way, per- 
mitting free exchange of particles�9 If the volume fractions 2~ = [A, [/[A[, 
22 = [A_, [/IA[ are fixed and it is assumed that correlations of the subsystems 
are an ignorable boundary effect in the limit [A[--* m, then 

P(n A ~ n )  ~ sup { P(nA, ~ nl) P(nA2 ~n2)} 
{ ,'ll, 112 : "~1 n l  + 22112 = n }  

~exp{lAI sup [ 2 , s e ( n l ) + a 2 s e ( n z ) ] }  
{ I l l ,  "12 : '~1 n l  + 22112 = n } 

~ e x p [  IAI sE(n)] (2.24) 



Hydrodynamics Outside of Local Equilibrium 399 

where the assumption of concavity was used in the last line. In other 
words, the distribution of density fluctuations is unchanged for the com- 
pound system and is something like an asymptotically "stable law" in the 
sense of limit theorems of probability. We believe the concavity is likely to 
hold for the systems we consider, or in general for steady states with such 
stability. 

To conclude this section, let us make a few explanatory remarks concer- 
ning the physical interpretation of the various quantities introduced above. 
Since the lattice-gas dynamics is at a fixed temperature, the appropriate 
thermodynamic potential is actually the free-energy function fe(n, fl), with 
units of energy per volume, related to our "entropy" as 

s~(n, p) = -/~f~(n, p) (2.25) 

For  notational convenience, however, we have preferred to work with the 
"entropy" se with units of inverse volume. Our parameter 2 is likewise 
related to the usual electrochemical potential/~ as 2 = rift. In Section 4.3 we 
shall show that f has a simple operational significance as the minimum 
energy dissipated by external fields required to change the density from its 
reference value n* to a new value. We have chosen to work with number 
density n, but we could just as well have used the charge density p = q. n. 
In that case total charge Q~j would replace particle number N A in the 
preceding arguments. The quantity q~ =~tt/q can then be interpreted as 
the "electric potential" of the system. If the need arises, we may denote the 
"number current" previously introduced as jN and the "electric current" 
q . ju  as jQ. 

2.2. The Nonequ i l ib r ium Dis t r ibut ion  Formula  

The problem we wish to study is the relaxation of an inhomogeneous 
density distribution no(r) imposed upon the homogeneous measure Pe.~.. 
A basic condition necessary for the validity of a hydrodynamic description 
is the separation of scales between length and time scales associated to the 
microscopic cqnservative dynamics and the length and time scales over 
which the macroscopic density variations occur. We always denote by E the 
small ratio of micro/macro length scales, which is here just E= (lattice 
spacing)/(gradient length). Thus, we wish to consider states in which the 
density variation in lattice units is no(eX). From the discussion in the pre- 
vious section, one guesses that an appropriate way to modify the reference 
measure Pe.N*.A is by adding a local chemical potential term. More 
precisely, we define a (canonical) local stationary measure in the scaled 
domain A, = (E-IA) c~ Z d as 
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with 

1 (  ) 
P~+(q) =~+. exp ~A, 2o(�9 fix PE, NZ. A+(rl) (2.26) 

, .  ) Z + -  }-" exp 2o(�9 PE. Ng.A,(q) (2.27) 
11 m: -Q,I~ x Ic 

Here 2o(r) is the smooth chemical potential field given by the "local 
prescription" 

20(r) = - s'(no(r)) (2.28) 

(We drop E subscripts in this section when no confusion will result.) Also, 
N* = [In*-A,]], where [[.] denotes the integer part. For simplicity in the 
following expressions, we shall often abbreviate 

PE.N* A+=P * 

We consider always periodic b.c. on A. 
The "nonequilibrium distribution formula" is an exact expression for 

the time evolution of the initial measure P~" under the DLG dynamics. It 
can be written in the "weak" form for averages as 

- d s  r ,  [O,,+,'t( ex, r - � 9  
X ~ A r  

s L  r - -  e s  I s ,  r - -  x ((A,,.,,+~, e f )  I .... (x)>+ +" 

+ 0r).(Ex, *:--es)<(e+Lf)(rIx - <rlx)~" . . . . .  i.,. . . . . . .  ))+ ] (2.29) 

We now explain our various notations. The parameter z is a "macroscopic 
time," associated with a microscopic time e - l r  which goes to infinity as 
E ~  0. The formula itself is valid without any need for e to be small (e.g., 
it is true with e = 1), but we wish to consider the evolution of the density 
distribution slowly varying on the spatial scale ~ E-1. A change of order 1 
in the density occurs in a time ~E -1 through the transport of particles 
over distances ~ �9 by the local drift velocity. The formula depends upon 
a space-time chemical potential field ,;t(r, r) in the macroscopic variables 
which--we emphasize--is at this stage arbitrary except for the initial condi- 
tion 2(r, 0)=20(r)  and some reasonable smoothness. The expectation 
<. >~"+ is with respect to the local stationary distribution for the profile 
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2(., r). For any choice of a chemical potential profile, I ,  is a "modified 
current" defined by 

I .... (x, q)--=c(x, x +~,, ,  r/) 

[ exp{ [ 2(e(x 
X 

= j,,(x, 11) + 0(6) 

+ e.,)) - 2(ex)](qx - 'L, + ~,,,)} - 1] 

J 
(2.30) 

The symbol O, +, denotes the operation of forward difference, (O,,+,2)(r) - 
[2(r+e~m)-2(r)]/e, and Axy is the "exchange operator," (A~y) f ( r / ) -  
f0l~Y). We use the summation convention for the repeated index m [except 
in Eq. (2.30)] and also below for other repeated Latin indices. The basic 
advantage of the "nonequilibrium distribution formula" is that it separates 
the true time-evolved distribution into a leading part of order ~ 1, which 
is given by a canonical local stationary distribution with a reference profile 
n(-, r), and a correction term of order ~ e  involving microscopic space- 
time correlations. 

The proof of Eq. (2.29) is straightforward, based upon a simple trick 
using the fundamental theorem of calculus. In fact, it is easy to see that 

( e,-'~Lf ) /~" -- 1 ( z  ) 
Z~,.., ~ P*(rl) exp 2(ex, r) r/x f(r/) 

t I \ X  E A e 

r d [ exp(Z~ ~ A, 2(ex, r - es) q~) 
+ZJ o ' s z [  

q 

(e~'Lf)(r/) ] P*(r/) 

(2.31) 

where Z~ ''~ is as defined in Eq. (2.27), but with 2o(eX) replaced by 2(ex, r). 
Carrying out the differentiation inside the integral then gives 

(e ' -"Lf)"  = ( f )  :" ~ + ~ iO-'" ds Zl.,',l, ---------~ [ (LeSLf)(q ) 
q - - e  

(r/x) ~" ...... ) x (e'*Lf)(,7) ] - e Z O . 2 ( e x .  r -  eS)(,7.-- 
x E A r  

xexp ( y' 2(ex, r - e s )qx )  P*0I)  (2.32) 
\ X  E / I  s 

In the first term in the square brackets one obtains the factor 
(L*P~ . . . . .  )(r/) by taking the adjoint L* of the operator L with respect to 
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counting measure, which is given by Eq. (1.2). For  any local stationary dis- 
tribution this factor is easily calculated to be 

( L * P ~ " ) ( r / ) = - e  ~ 0+2(Ex) Ltx. x+~,,,[I .... (x, q) P~"(~l)] (2.33) 
x E A ,  

when the stationarity condition (L*P*)(tl)=0 is used. If this result is now 
substituted into Eq. (2.32), the originally claimed formula is obtained. 

Another useful form of the expression can be established by noting 
that, for any local stationary distribution, 

O + 2 ( e x ) ( I  .... (x ) )~ '=  0 (2.34) 
x ~ A ~  

as an exact identity. This will also turn out to be very important in the 
discussion of hydrodynamics in the next subsection. It is easily proved by 
summing Eq. (2.33) over q~g2A. AS a consequence of this identity, the 
entire distribution formula can be expressed in terms of truncated expecta- 
tions ( f g )  T= ( f g )  _ ( f ) ( g ) ,  as 

�9 - I r L  Is Is, r r ~-'z < e f ) , = ( f ) ,  - - e .  ds ~ (0+2(ex,  r - e s )  
"~0 x ~ A ~  

x((LI  x ..-x + 6,,,e'Lf) I .... . . . . .  (X)) ,  t. ........ v 

+O~2(ex, r--Es)( (eSLf) ">" ........ r /x , ,  �9 r) + o(E) (2.35) 

The o(e) error term arises from the fact that <,ax, x + ~ , , , e ' -  ~.L~-72,/. . . . . . . .  �9 becomes 
independent of x only in the limit E ~ 0. This new form is very crucial in 
taking that limit. 

Until this last point we have not made any simplifications based upon 
small E and the results are formally exact. We have also not made any 
particular choice of reference profile 2(., r), except for the required initial 
condition. However, we wish now to make an evaluation of the formula 
which should be asymptotically exact for E + 0. In particular, we wish to 
approximate the expectation 

~ - l r L  r  lS 
e O'[E-Ir] j / e  

w h e n f i s  a local function supported in a neighborhood of the origin shifted 
to the lattice point [[e-lr]l. The first term in the desired approximation 
ought to be the "local steady-state" part, in which the average is with 
respect to the homogeneous stationary measure at density n(r, r) and the 
second term is a correction. Of course, to have a chance of getting a small 
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correction of order ~ e it is necessary to choose the correct hydrodynamic 
profile in the leading term of order ~ 1, which should be determined by the 
solution of the "Euler-level" hydrodynamic equation. The resulting for- 
mula, which characterizes the behavior of the time-evolved measure in the 
neighborhood of the space-time point (r, r), is 

e - l r L  F X / s  
e O'[a-lr] J / e  T 

= < f >  n(r. "r) -~- EOrn)~(r ,  ~ )  Z x.,(rl,,f> .',(r, "r) 
x 

-eO,,2(r,  r) f :  dt Y' [ < ( d ,  ,L r x+~,,e f)j,,(x)> �9 n(r, r} 
x ~ Z  d 

-x (n ( r ,  r)) j",,,(n(r, t)) f ' (n(r ,  r))] + o(e) (2.36) 

We have introduced a new notation 

f(n) - <f>,,  (2.37) 

where the expectation is with respect to the infinite-volume stationary 
measure at density n and f '  denotes derivative with respect to n. [ We also 
use the same notation f(2)  for f(n(2)), hopefully without any confusion.] 
In Eq. (2.36) we have now made a special selection of the reference profile, 
as the solution of the initial-value problem for the first-order hyperbolic 
equation 

0~2(r, r) = - j ' (n(2(r ,  r))).  V2(r, r) (2.38) 

As we discuss in the following subsection, this is indeed the "Euler" 
hydrodynamic equation of the system, correct to describe the evolution of 
the density for microscopic times ~ e-1. We shall see below that it is this 
choice of the profile which produces the term proportional to 3'(17) in 
Eq. (2.36). A formal argument, given in Appendix 3 of ref. 14, shows that 
this is precisely the subtraction necessary for the convergence of the time 
integral. 

The derivation of the asymptotic formula (2.36) is no longer rigorous, 
but is based upon plausible formal reasoning. The first two terms come 
from an evaluation of the local stationary expectation in Eq. (2.35). In fact, 
if one approximates 

2(ex, r) = 2(r, r) + eV2(r, r) �9 ( x - e - l r )  + O(e 2 ) (2.39) 

for ex ~ r and expands out the exponent in the canonical form, one obtains 

a T (cr~,_,r?f>ls'~=(f>,~r.~+eO,,2(r,r)~x,,(tl~f>,,ir.~+o(e) (2.40) 
x 

822/83/3-4-8 
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To evaluate the time-integral term, one first substitutes Eqs. (2.30) and 
(2.38), to obtain for it 

~--I g 

Ell ds ~ O.,a(ex, r-Es)[(a . . . .  ~,,,e*%~.-,r~f. jm(X)>"g . . . . . . . .  T 
x E / l e  

--j',,(n(ex, r - - e s ) ) ( e "La i , - , , ~ f . , l= )~  ........ r] +o(e)  (2.41) 

If the truncated correlations decay rapidly enough on the microscopic 
scale, then the time integral and space sum in the above expression get 
their main contributions from the regions s ~ 0 and ex ..~ r. In that case, the 
reference profile may be evaluated everywhere to leading order by its value 
at space-time point (r, r) and the integral and sum may be extended to 
infinity. In this way, the previous expression is estimated as 

eO,,A(r,r) ds ~z (Ax 'x+~me"Zf ' jm(x ) ) r  
x d n(r,  r )  

- j . , ( n ( r ,  r ) )  3-' "" r ] + o(e)  ^' ( e f "lx> ,,m ,~ 
X E Z d J 

(2.42) 

However, appealing to the fact that the state .),, may be obtained by 
adding the chemical potential term exp[2 Z.~ '/x] to the reference measure 
in finite volume, one finds by a formal exchange of limits that 

f'(n) =Z  f'(2) 
1 

(2.43) 

Substituting this expression into the final term of (2.42), one checks that 
the claimed asymptotic formula (2.36) is the result. Although no careful 
justification was provided for the various steps in the previous argument, 
it is clear that the main requirement is a rapid decay of the truncated 
space-time correlation functions. This certainly restricts us to dimensions 
d >  2, since there are nonintegrable long-time tails in dimensions d =  1, 2 
(see Appendix C). If the assumption is violated--for any reason--then a 
similar evaluation could still be made, but with a result nonlocal in the 
space-time profile ;t(r', r') and involving an integral kernel defined in terms 
of truncated correlations. The assumption of fast decay has allowed us to 
"Markovianize" the expression. 
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To conclude this subsection, we observe that the same types of for- 
mulas as both the exact expression (2.29) and the approximate asymptotic 
expression (2.36) can be derived as well for classical or quantum 
microscopic dynamics. The exact expression can also be written as a for- 
mula for the density (or Radon-Nikod~m derivative) of the true time- 
evolved measure with respect to a reference local stationary measure. In the 
case of classical or quantum dynamics there is another version of this for- 
mula which can be proved by exploiting the Liouville theorem in which the 
space-time integral appears in an exponent. C~-3" 23i This density of exponen- 
tial type is closer to the "Girsanov formula" for change of measure in 
stochastic analysis. In all cases, the exact expression for the time-evolved 
measure involves an integral over the past history of the system. 

2.3. Microscopic Der ivat ion of Hydrodynamics 

Hydrodynamic behavior in the systems we consider is due to the 
presence of microscopic conservation. In the DLG  model there is local con- 
servation of particle number, expressed as 

GN(x,  t) + Vs J,,,(x, t) = 0 (2.44) 

Here N(x, t) is the occupation number at point x at time t in a particular 
realization of the dynamics, J,,(x, t) is the instantaneous flux of particles 
from site x to site x + ~,,, at time t for the same stochastic trajectory, and 
( V m b ) ( x ) = b ( x ) - b ( x - ~ , , , )  is the backward difference operator. The 
expectation of this relation at t = 0, conditional on being in configuration 
~/, is 

Lrl x + V ~  j , , ( x ,  r/) = 0 (2.45) 

(which is quite easy to verify also by direct calculation). These two rela- 
tions are the expression of the fact that particles are neither created nor 
destroyed in the DLG dynamics, but simply hop to neighboring sites. 

The derivation of the hydrodynamic law, at least for ensemble- 
averaged densities, is considerably simplified by the existence of the 
microscopic conservation laws. In fact, let us define the mean number den- 
sity for the time-evolved measure, as 

/ e ~  I ' r  x /.~: 
11~(r, r) =- q e rl[,-~,~) ~ (2.46) 

and the mean current density as 

j ,(r,  r ) =  (e'- 'rzj([[E-tr]])> a', (2.47) 
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Then, using the conservation relation (2.45), it follows that 

0~l~,(r, r) + 0,7,j .... (r, r) = 0 (2.48) 

Therefore, the "balance equation" for the mean density follows straight- 
forwardly. At this point we have not even made any use of the fact that the 
averages are with respect to a "local stationary" measure, and the above 
equation holds quite generally. 

However, we have seen also in the preceding subsection that the time- 
evolved measure can be separated into two contributions, the leading-order 
term having the canonical local stationary form and a correction term of 
order ~ �9 The local stationary part must, for consistency, have a reference 
profile which is the same as ~i,(., r), up to possible deviations of order ~ �9  
This means that an equation for the mean density can be derived by 
evaluating the mean current correctly up to that same order and substi- 
tuting into the balance Eq. (2.48). The required result for the mean current 
is 

j ..... ( r , r )=j , , ( f i , ( r ,  r ) )+O(e )  (2.49) 

This "constitutive law" closes the balance equation in terms of the density 
at that order, yielding the following first-order hyperbolic equation: 

a~li(r, z) + a,,jm(~(r, r) ) = 0 (2.50) 

It is easy to see that Eq. (2.50) is the same as Eq. (2.38), and is the "Euler 
hydrodynamic equation" for the DLG model. It is expected to give a 
correct description of the evolution in the initial density distribution over 
microscopic times of order �9 up to corrections ~ e: 

~,(r, r) =n(r, r) + O(e) (2.51) 

The equation does not involve E, so that its solution is likewise inde- 
pendent of E and has been denoted simply as n(r, r). 

An important fact concerning the Euler hydrodynamics can be 
deduced from the exact relation (2.34) in the previous section. Consider 
that equation for any chosen reference profile 2(.). Recalling that 
I, . , ,(x, r l )=j , , (x ,  r/)+ O(E), substituting into Eq. (2.34), multiplying by E a, 
and taking the limit �9 0 gives 

f adr  0,,,2(r) j'm(n(r)) = 0 (2.52) 
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whenever the reference profile 2 has at least one cont inuous derivative. This 
result can be given a direct physical interpretation by defining the following 
"local ent ropy functional": 

S(n) = fA dr  s(n(r)) (2.53) 

in terms of  density profiles n(. ) over A. Then, not ing that  

6S 
2(r) - (2.54) 

fin(r) 

a simple integration by parts gives 

~S ^ 
fA dr O,,,j,,(n(r)) = 0 (2.55) 

Therefore, this relation just states that dS/dt  = 0 instantaneously for the 
Euler evolution, which is therefore conservative of the ent ropy S. 5 However,  
it should be noted that  this result assumed the differentiability of  the 
chemical potential  profile 2( .)  [ or  of  the density profile n( - ) ] .  Even if this 
were true for the initial density n0(. ), it need not  be true for the solution 
n(., r) of  the Euler equations. Since the function j(n) is nonlinear in 
general, the characteristic velocities c ( n ) = j ' ( n )  depend upon  the density, 
and shock-type singularities m a y  appear  after a finite time if characteristics 
intersect. Thereafter, the equat ions would have to be interpreted in a 
suitable "weak" sense and the ent ropy conservat ion law for the Euler 
dynamics would break down. 

The Euler equations,  while adequate  in certain regimes, will not  be 
sufficient for long times. For  example, they cannot  describe the relaxation 
of  the initial density no(r) to a final homogeneous  state n~( r )  of  constant  
density l i o=(1 / IAI ) jAdrno( r ) :  if the solution stays smooth,  then S will 
keep its initial value S(n o) forever and never even begin to approach  the 

5 For the situatiorl we are considering here with a single conserved quantity, this is actually 
a trivial result. In fact, for any differentiable function h(n), one can define the associated 
flux jh(n)=~',',, dffh'(li)j'(li) so that a smooth solution of the Euler equation satisfies 
0Th(n(r, r))+ a ,,, j~',,( n( r, r)) =0. Therefore any "local functional" H(n)= ~.j dr h(n(r)) is con- 
served. However, our result holds also with an arbitrary number of conserved densities 
P = ( P t  . . . . .  Pr) and then the existence of a conserved, concave entropy function s(p) is a non- 
trivial and important fact. Indeed, it is not hard to show that there is an associated current 
function is(p) so that a local conservation holds as above, i.e., (s,j s) are a convex Lax 
entropy pair for the drift-diffusion equation (2.61). Existence of such an entropy pair is 
generally true of the PDEs which arise in statistical mechanics, as discussed elsewhere. ~36~ 
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expected final value S(n~)= IAI. s(lio)> S(no). (The inequality follows by 
strict concavity of s.) In fact, production of entropy and the relaxation to 
the final stationary state will occur on a longer time scale ~ e  -2 in 
microscopic units due to an additional diffusive contribution to the current 
of order ~e. To derive the corresponding "Navier-Stokes hydrodynamic 
equation," therefore, the mean current in Eq. (2.48) must be evaluated to 
that order. 

The evaluation may be accomplished using the general formula (2.36) 
for the order ~ � 9  correction to the local stationary state. Observe that this 
formula is valid if the correct mean density si, is used for the reference den- 
sity in the local stationary state rather than the solution of the Euler equa- 
tion, because 

0,2(~,(r, r)) = -j"(l~,(r, r))-V2(l~,(r, r)) + O(�9 

and the changes to the formula (2.36) are O(e2). Therefore, it is easy to 
calculate the "constitutive law" at the next to leading order, as 

j .... (r, r) =j,,,(li,(r, r)) - �9 r)) c3/2(1~,(r, r)) + o(�9 (2.56) 

with 

L.,,(n) _ ~  . �9 r = xt(llxJ,,,), , 
x 

1 T ^ l  At + dt (Ax.~+~,e'Lj,,(O). j l ( x ) ) ,  -- x(n) j,,(n) j/(n ) 
x d 

(2.57) 

or, equivalently, 

with 

j ..... (r, r) =j,,(ff,(r, r)) - eD,,,/(1~,(r, r)) 0117,(r, r) + o(e) (2.58) 

L,,n(n) = D,,n(n) x(n) (2.59) 

Since D is the coefficient of the contribution to the particle flux linearly 
proportional to the density grad!ent, it may be identified as the (bulk) diffu- 
sion matrix, whereas L is the so-called Onsager coefficient. The first version 
of the constitutive law is said to be in the (Onsager)force-flux form, 
because X = - V 2  is the "thermodynamic force" conjugate to the "flux" j. 
It is interesting to note that if we discuss charge density p rather than 
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number  densi ty  n, then the const i tu t ive  law for the electric cur rent  is 
ob ta ined  a s  

j~,, ,(r,  r)  = j',e,(/~,(r, r ) )  - eX,a(/~,(r ,  r ) )  0,<p,(r, r )  + o(E) (2.60) 

with s = flq2L. The la t te r  is a k ind  of  "conduct iv i ty  mat r ix"  for the electric 
field E = - - V ~  due to the i nhomogeneous  "e lect rochemical  potent ia l . "  (See 
Sect ion 2.5 for fur ther  discussion.)  

Employ ing  the order  ~ e const i tu t ive  law in the local  ba lance  equa t ion  
(2.48) then yields the " N a v i e r - S t o k e s  equa t ion"  in the form 

0d , , ( r ,  r) = - c,,,(n,(r, r))  O,,,n,(r, r)  + eO,,,[D,a(n,(r, r ) ) .  0 tn , ( r ,  r ) ]  

(2.61) 

This  is precisely a driven diffusion equation, where  c represents  the drift  and  
D the diffusion. 6 It  is also easy to write  down the equa t ion  in "Onsage r  
form" using the Onsager  mat r ix  ra ther  than  the diffusion matr ix.  This  
equa t ion  conta ins  the small  p a r a m e t e r  E, and  its solut ion,  which depends  
now upon  r m a y  be deno ted  as n,(r ,  r). (Physicis ts  m a y  not  be accus tomed  
to wri t ing the small  p a r a m e t e r  explici t ly in this equat ion ,  bu t  e lementary  
kinet ic  theory  es t imates  show tha t  t r anspor t  coefficients like D are p r o p o r -  
t ional  to  the mean  free pa th  in physical  systems, and  therefore  ~ E, when 
lengths are  measured  in macroscop ic  units.)  It is expected that  the so lu t ion  
n,  will be accura te  to descr ibe the mean  densi ty  17, no t  only  for t imes 
~ e  -2, bu t  even uni formly  in time, in the sense that  

sup In,(r, r ) - a , ( r ,  r ) l = o ( E )  
r E A ,  0 < r < ~  

(2.62) 

as long as the so lu t ion  stays smoo th  (i.e., no densi ty  gradients  of  o rde r  E - 1  

develop)  and  the basic  a s sumpt ion  of  a sepa ra t ion  of  scales remains  valid. 

6 A peculiarity of the single-component case is that only the symmetric part of the diffusion 
matrix D enters into the hydrodynamic equations. Indeed, the diffusive term can be written 
a s  D,,,l(n ) a,,,Olllq-D'ml(ll)(a.,ll)(aln), which makes explicit that only the symmetric part 
enters. This is responsible for a number of special features that appear here. In particular, 
if the drift current happens to vanish--as it does in some known cases (Appendix C)--then 
time reversibility is restored at the macroscopic level, although it is broken microscopically. 
This will become clear from our discussions in Sections 2.4 and 4.1, which imply that the 
Graham-Haken "potential conditions" are satisfied here. It is not true for multicomponent 
DDS or more generally, and we shall make no use of this fact in our discussions. Note that 
even for the single-component case an unambiguous definition of the full diffusion tensor, 
antisymmetric as well as symmetric part, is provided by the current response to a local 
chemical potential gradient: see Eq. (2.58} and Section 2.5. 
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However, if the Euler equations develop shocks, then the shock width for 
the Navier-Stokes equation will be of order ME and the scale-separation 
assumption will break down. In that case, the approximation of the 
Navier-Stokes density to the true density in the region of the shock may 
be poor and an alternative description may be necessary. On the other 
hand, the Navier-Stokes solution should undergo a smooth approach to 
the final homogeneous stationary state. Entropy is no longer conserved, 
but instead 

d L drr S(n,(r)) = �9 dr L,n(n,(r, r)). 0,,,2,(r, r) 0t2,(r, r) (2.63) 

Observe that only the symmetric part LS= I(L + L x) contributes in this 
expression. We shall, in fact, show in the next section that L" is a positive- 
definite matrix, so that the entropy must increase, dS/dr >>. O, and dS/dr = 0 
only for a homogeneous state with 0, ,2=0. Among all of the density 
profiles with the same mean density (1/IAI)IAdrn(r)=~o, the homo- 
geneous state no~(r)=fi0 is the unique, absolute maximum of S when 
s(n) is strictly concave. Therefore, S(n) is a Lyapunov functional for the 
Navier-Stokes dynamics, which guarantees the approach to the final 
stationary state n~. 

The derivation we have given of the hydrodynamic equations is essen- 
tially an analog for microscopic systems of the Chapman-Enskog expansion 
in the Boltzmann equation context, a fact which was previously observed 
by Zubarev ~2~ for local-equilibrium systems. Chapman-Enskog expansion 
was also the method employed by Wannier in his original discussion of 
DDS at the Boltzmann level. I ~2~ The "nonequilibrium distribution" may be 
regarded as an explicit solution of the master equation (1.2) in so-called 
normal form. That is, it is a solution which is a functional of the conserved 
density field n,(r, ~) through the chemical potential histories )~,(r, r) used in 
its construction. The basic perturbation method employed for the con- 
stitutive relations is one in which the fluxes are assumed to have an 
asymptotic expansion in the explicit E dependence (at least when truncated 
at order E), but the implicit e dependence via the solutions n, themselves 
is not expanded. This is exactly the procedure used in the Chapman- 
Enskog method for the Boltzmann equation, which yields at zeroth order 
the Euler equations, at first order the Navier-Stokes equations, and at 
second order the so-called "Burnett equations." We have not attempted to 
carry out the expansion in the DLG model to second order, since, for most 
microscopic systems in d =  3, the resulting expressions for the Burnett- 
order transport coefficients will diverge as a consequence of "long-time 
tails.,,~3.35~ 
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We note at this point that using Hypothesis 1 we have not only suc- 
ceeded in deriving the hydrodynamic laws, but we have also developed 
microscopic expressions for all of the quantities involved: the entropy 
function or "fundamental equation," the Eulerian fluxes, and the Onsager 
relaxation coefficients [see Eqs. (2.11), (2.49), (2.57)]. In a more realistic 
context, therefore, the methods developed here should be useful in 
molecular dynamics calculation of nonequilibrium transport behavior. 
The exact expressions may also be useful for theoretical evaluation by 
approximation methods, such as low-density expansions. We should 
emphasize that, although our methods are formal, our results agree with 
available rigorous results for the infinite-temperature ( f l = 0 )  case of the 
DLG, the so called asymmetric simple exclusion process, or ASEP 
(Appendix C). We shall show furthermore in Section 3.3 that the results are 
consistent with those of another formal method, the so-called "correlation- 
function approach." 

A final comment here concerns the probability sense of our derivation. 
We have only given a (heuristic) derivation of the hydrodynamic laws for 
the ensemble averages. In fact, the equations should hold in a much 
stronger sense, i.e., they should be true for empirical densities in individual 
realizations with probability going to one as e--* 0 (hydrodynamic law of 
large numbers). We shall discuss a refinement of this statement, the 
hydrodynamic large-deviations principle, in Section 4. No mathematical 
derivation of these probabilistic statements will be attempted, even at a 
formal level (however, this could be done by the "level-2" method of 
Zwanzig~e~). When we speak of "derivation" we mean it in the sense of 
physics as "guessing the correct answer." 

2.4. Reversibility and Onsager Reciprocity 

At this point we shall consider the subject of time reversal for the 
stochastic D L G  dynamics, and, in particular, the consequences for the 
hydrodynamics of time-reversal invariance of the stationary measures when 
E =  0. The meaning of time reversal for stochastic dynamics is essentially 
the same as for classical or quantum dynamics, but may be somewhat less 
well known to" physicists. Therefore, we shall start by briefly reviewing the 
subject. Basically it means that a history of the system which is typical of 
the stationary state will appear the same when run forward or backward in 
time. Another way of saying it is that transitions from a set A c / 2  to a set 
B c / 2  occur, in the stationary state, with the same frequency as transitions 
from B to A. On the more formal level, let {N(x, t)} as before denote the 
ensemble of particle histories composed of realizations of the stationary 
Markov process obtained by using the stationary distribution P,, as the 
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initial distribution on ~2 and P,(B[ q)= (e'LzB)(tl) as the Markov transition 
probability from configuration q into subset B c Y2 (Xa is the characteristic 
function of the set B). Then, the "time-reversed process" N r is, very 
naturally, defined by 

Nr(., t) = N(.,  - t) (2.64) 

This is also a stationary Markov process, with single-time distribution P, .  
The generator L r can be obtained from the definition 

and 

( f  . e'Lg),, = E,,[f(N(0)) g(N(t))] 

E,,[f(N"(O)) g(N"(t))] = E , [ f (N(0 ) )  g(N( - t ) ) ]  

= E,[f(N(t)) g(N(0)) ] 

We use the symbol E,,(-) to denote the average in path space over 
ensembles of histories, as opposed to the single-time average ( . ) , ,  with 
distribution P,,. Therefore, 

( f  . eZ"g),, = (eL'f  .g),, (2.65) 

and we conclude that L" is the adjoint L* of L with respect to P , .  A point 
worth emphasizing is that--unlike the adjoint L* with respect to counting 
measure-- the adjoint L* requires knowledge of the stationary measure P,, 
for its calculation. 

It follows from these general results that the Kawasaki dynamics we 
consider has a time reversal of the same type. For  example, it is also con- 
servative 

O,Nr(x, t)+ V~, J~,(x, t ) = 0  (2.66) 

with local current J',~,(x, t ) =  -J,,,(x, - t ) .  In a finite volume A it is easy to 
show also that the time-reversed dynamics is a Markov jump process with 
rates given by 

c"(x, y, qxy) p,,(q) 

c(x, y, JI) - P,(r/xy) 
(2.67) 

Indeed, it is direct to check. 
( f  . Lg) , , - - (  L"f .g), ,= { L(fg) 
identity 

with Eq. (2.67) as a definition, that 
It is helpful here to note the 

( f .  cr(x, y) ,, = (ZJxy f .  C(X, y)), ,  (2.68) 
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The result (2.67) has also an extension to infinite volume, if the right-hand 
side is expressed in terms of local conditional distributions, t33~ 

The process is said to be reversible if N r =  N in distribution. This 
definition has a number of mathematically equivalent formulations. 
Obviously, one equivalent statement is that L t =  L, i.e., the generator of 
the process should be self-adjoint with respect to measure P,,. A more 
intuitively appealing formulation follows from Eq. (2.67) when cr=e, 
namely 

c(x, y, r/Xy) P.(II xy) = c ( x ,  y, I1) P,,(q) (2.69) 

which is the usual condition for detailed balance of the rates with respect 
to P,,. The DLG dynamics is not reversible if E ~ 0. In fact, applying the 
relation (2.68) for f = r/X - Ily gives 

(j~,,(x)),,  = -- ( j , , , (x)), ,  (2.70) 

as a general relation and ( j , , ) , ,  = 0 in a reversible case. (Of course, it may 
be true even in a nonreversible case that ( j , , , ) , ,=0 :  see Appendix C for 
rigorous results on such examples.) However, the D LG  measures at finite 
E support a nonvanishing mean current. Of course, for E = 0  the DLG 
dynamics is reversible with respect to the Gibbs measures with 
Hamiltonian H by construction [see Eq. (1.3)]. 

An important consequence of microreversibility for hydrodynamics 
was derived by Onsager in 1931, the famous Onsager reciprocity (OR) for 
the transport coefficients: see ref. 10, usually referred to as RRIP I, II, and 
also the later elaboration with his student Machlup/36J To explain the 
reciprocal relations in a wide context (e.g., see ref. 37), we consider a 
general hydrodynamic law for conserved densities p~, ~ =  1 ..... k, in the 
"Onsager form": 

O,p~(r, t )= -O,,,~,,,,(p(r, t))+O,,,[L ..... /p(p(r, t)).012t~(r, t)]  (2.71) 

(For simplicity of notation we set e = 1 here.) As with our particular exam- 
ple, the "chemical potentials" 2~ are conjugately related to the conserved 
densities through a "local entropy, functional" S as 2~(r)= -6S(p) /@~(r ) .  
The entropy S is conserved by the Eulerian flux j,,,,(p). If the time-reversal 
parity of the density p~ is e~ = _ ,  then Onsager reciprocity states that 

e~e/sL .... r p) = L~p ..... (p) (2.72) 

One can also add to this the relation 

ej,,,~(a - p) = - j , , , ( p )  (2.73) 
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for time reversal of the Eulerian flux. Notice that this relation implies that 
the Euler part must vanish if all time parities are even, e~ = 1. Onsager's 
explanation of these very general phenomenological relations as a conse- 
quence of time reversibility of the microscopic dynamics is still considered 
one of the great achievements of nonequilibrium statistical physics. We 
shall demonstrate here that these relations are valid for the expressions we 
have derived from the microscopic DLG dynamics when E = 0  and 
microreversibility holds. 

It should be pointed out that Onsager's original derivation, unlike 
ours below, did not use any microscopic expressions for the transport coef- 
ficients. In fact, the key hypothesis--Eq. (1.2) in RRIP I I - -  can be reinter- 
preted in the Langevin formulation of Onsager and Machlup as stochastic 
reversibility at the level of a macroscopic thermodynamic description. In 
other words, with a suitable interpretation, Onsager's derivation did not 
even use microreversibility in any essential way except to motivate the 
assumption of macroreversibility of the Langevin fluctuating hydrodynamic 
description. This means that it is actually somewhat more general than our 
derivation, because it applies also to systems without microreversibility but 
where detailed balance is restored on the macroscopic level (e.g., 
Rayleigh-Ben~rd cells near onset of convection or lasers near the critical 
inversion ~38~ and a stochastic lattice gas model discussed in ref. 60). There- 
fore, Onsager reciprocity ought to be considered a result of macroscopic 
thermodynamics proper. 

In our derivation of the OR for the DLG model transport coefficients, 
it is useful to consider a generalization of those relations which applies even 
when E ~  0. Such a generalized Onsager reciprocity (GOR) was considered 
recently by Dufty and Rubi O9) and gives a formal extension of OR to 
systems without detailed balance (see also ref. 40). GOR relates quantities 
for the forward and reverse dynamics as 

%epL',i,~" qj(e. p) = Lqs ..... (p) (2.74) 

and 

ed,~, . (e-p)  = - L , , . ( p )  (2.75) 

Unlike the original OR relation, it does not relate physically measurable 
quantities, since it is impossible in practice to realize the time-reversed 
dynamics in the laboratory. Nevertheless, they will turn out to be formally 
useful to us in our discussion of the DLG model in order to establish 
the equivalence of the Kadanoff-Martin and nonequilibrium distribution 
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function methods for deriving hydrodynamics. Here the GOR relations 
take the simple form 

L,~,a(p) = Lh,,(p) (2.76) 

and 

j'~,(p) = - j , , (p )  (2.77) 

since there is only one component ( k =  1) and the time parity of the 
number density is even. We verify now that these relations hold for our 
microscopic expressions. The second relation, in fact, follows directly from 
the definitions and Eq. (2.70). For the main GOR, Eq. (2.76), it is helpful 
to distinguish two contributions to L, a "static" term 

L],t,~ t = - ~ x ,  ( ~ l x J , , ( O ) )  ff (2 .78)  
x 

and a "dynamic" one 

t L  �9 �9 T ^r ^ t  ~,,ardY"= dt (Ax. ~ +~te 7m(0) ' J / (X)) , -x (n) j , , (n )J / (n )  (2.79) 
X d 

We verify the GOR for each separately. 
For the static contribution we use the following alternative form: 

1 
L,~,t,~'= - l i m -  ~ x , , , y , (Lqx .q , )S . ,  , (2.80) 

~, ~ z~ ]A 1 x , ,  ~ A 

In fact, 

T LSt"t-,,a - - lim ~ yt(j, ,(O) rly)A.,, 
A T Z a  y ~ A  

1 
= -- ..,limT z,' ~ ,, ~ ., ( 'Vl--xl)(J"'(x)qv)~'" 

1 
= A Tz,j T-~ x l i m  ~ A x"'Yl((V~Jk)(x)rlY)'~'" (2.81) 

In the last line, a contribution from the xt term in the previous line was 
neglected since it may be shown by using particle conservation, Eq. (2.45), 
that it is a surface term, which vanishes in the limit if correlations decay 
rapidly enough. Finally, Eq. (2.80) follows by applying again particle 
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conservation. However, the new expression for L star makes GOR manifest, 
since 

1 
L ~ t , ~ t . ~ = - l i m -  S' x , , y l ( L r ~ l x . q y )  r,~,. (2.82) 

ATZ' IAI x.~A 

s t a t ,  r _ _  s t a t  L r = L +. Therefore, Lon - L t ,  , follows using 
For  the dynamic contribution we also utilize an alternative form, using 

the identity (2.68) with f = e'Zj,,(O) �9 (qx - q.~ + j ,  to rewrite it as 

/dyn dt (e,i_j,,(O) .r r . . . . . .  ~ , n  = -  "J/(X)), ,--X(n)J, , ,(n)j  I (17 (2.83) 
X d 

The relation (2.77) was also used. However, this expression can be directly 
verified to satisfy GOR, since 

T d y n ,  r - -  dt 
x ~ Z  d 

= - -  dt ~. 
x ~ Z  d 

= - -  dt ~ 
x ~ Z  d 

- -  L d y n  
- -  /tH 

q 
ILr 'r  T Ar, t At I (e j,,,(O).j/(x)),--z(n)J,, (n)j/(n) 

J 

(j~,( -- x). e'LjAO)) ,T--z(n)j,~,;'(n)j~(n) 1 

�9 r A r  t 1 (e 'Zj , (O)  . j  ,,,(x)> , r_  z(n) j,~(n) j,,; (,7) 
J 

(2.84) 

as required. As for the static part, the main property used here was L " =  L+, 
in the second line. This concludes the verification that GOR is satisfied. 

If we make a decomposition of L into even and odd parts as 

L " =  �89 + L"), L~ = l ( L - -  L") (2.85) 

then the GOR states that the even and symmetric parts of L coincide and, 
likewise, so do the odd and antisymmetric parts: 

L" = L", L ~  " (2.86) 

Specializing to the case when E =  0, we recover the traditional OR in the 
DLG model. In that case j , , , (n )=0 ,  so the "Euler term" of the dynamics 
disappears. For  reversible lattice gases, the entire density change occurs on 
the "diffusive" time scale ~ e  -2 in microscopic units, and, by making the 
time scaling of this type, the factor of e in front of the diffusion term is 
removed. Notice also that L" = 0, and only the even terms remain. OR here 
states simply that these remaining terms are symmetric, 

L = L" (2.87) 



Hydrodynamics Outside of Local Equilibrium 417 

2.5. Linear Response and the  Einstein Rela t ion  

Locally the lattice gas sets up a diffusive flux in response to a small 
density gradient. As a consistency check, in linear response we should find 
a coefficient of proportionality which is identical to the one from the non- 
equilibrium distribution method. The formal manipulations in this calcula- 
tion are essentially identical, but the intuitive content is perhaps clearer. 
Let us prepare then, at t = 0, a state with a small negative density gradient 
by setting 

, to(, l)=Z(2')- '  P,,(r/)exp [ - - ~  2'x,rix I (2.88) 

The response in the average excess current at the origin at time t is given 
by 

Z( )J , - ' ( { e 'C[ j , , , (O , - ( j , , (O) ) , , ] } exp[ -~2 ' x , qx ] ) , ,  (2.89, 

with ( . ) , ,  the stationary state at density n. To first order in 2', Eq. (2.89) 
equals 

A,j,,,(t) 2' { ~ " T = - x / j , , , ( O ) ~ l x > , ,  

�9 r ^ t  ^ t  -- ds ((e"cj,,,(O))Jt(X)> T,, --z(n)J,,,(n)jl(n 

- tx(n) j;,,(n) j'~(n)~ (2.90) 
) 

Here we differentiated the exponential and, as before, once iterated the time 
evolution operator e 'L = 1 + ~ ds e L" "It. 

Initially the average density equals 17 - 2'x(n) x / for small 2'. According 
to the Euler equations (2.50), linearized at n since 2' is small, the density 
at the origin ~tt time t is n+2 ' t z (n ) j ) (n ) .  This induces a change in the 
current at the origin as -y, , ,(n)2' tx(n)j)(n).  Subtracting out this term 
yields 

1 
lim ~ Ad,,,(t) - tz(n)j',,,(n)j'An) = L,,n(n) (2.91) 

in agreement with Eq. (2.57). Note that we have obtained the full, in 
general nonsymmetric, Onsager matrix. 
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Besides the response to a density gradient, it is of interest physically to 
consider also the response to "mechanical" perturbations, i.e., to small 
changes in the dynamics. In our case the driving field is singled out. The 
response of the average current to it defines the conductivity matrix, 
a,,,/(n, E), at field strength E. At E = 0 the local detailed balance condition 
(1.3) implies the Einstein relation 

q2 
~(n, E = 0) = ~ L(n, E = 0) (2.92) 

In fact, this relation does not depend on how the driving field is incor- 
porated into the rates as long as (1.3) is satisfied: see ref. 20, Section 11.2.5. 
For E 4= 0, this will no longer be the case. One fairly natural choice is 

cE(x,y, rl)=Co(X,y, rl)exp[-�89 ] (2.93) 

with Co the equilibrium rates satisfying 

Co(X, y, q ) =  Co(X, y, qxy) exp[ -fl(H(r/xy) -H(r / ) )  ] (2.94) 

Then (1.3) holds and, taking into account that j,,,(O) also depends on E, 

tr,,,t(n, E) = ~ (j,,,(0)),, 

/ 1 .  
= q-'p ~ ~,,,,(c(0, ~.,),, 

- I o ~d t~  (~(jt(x)+jT(x))e'Zj,,(O)),,) (2.95) 

We note that ( j / ( x ) + j T ( x ) ) , , = 0  and no subtraction in (2.95) is needed. 
At E = 0 ,  since " - ' "  Jr-J/,  (2.95) reduces to the Einstein relation (2.92), but 
such an identity will not hold, in general. 

If the electric field is represented by the gradient of an electrostatic 
potential ~0 as E = - Wp, then as long as the field is weak enough for linear 
response to be valid, there is a useful combination of electrostatic and 
chemical potentials. (Note that the gradient representation by a single- 
valued potential is not possible for a constant E with our periodic b.c., but 
we have in mind more physically realistic situations.) According to the 
Einstein relation (2.92), the constants of proportionality in the linear 
response to - W p  and - (1 /q )  V12 are identical. In that case, it is useful to 
consider a combined electrochemical potential cp + (1/q) 12; cf. Landau and 
Lifshitz, ~-'7~ Section 25. However, it should be clear that this is only possible 
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in the weak-field regime, and that the response to a chemical potential 
gradient and.. the differential response to the electric field in the strong-field 
case are generally distinct. 

3. CURRENT NOISE A N D  THE F L U C T U A T I O N - D I S S I P A T I O N  
RELATION 

3.1. A Review of Standard Theory 

We now turn to a somewhat different subject, the theory of fluctua- 
tions about the hydrodynamic behavior whose description was derived in 
the previous section. While the predictions of the hydrodynamic equations, 
like Eq. (2.61), are observed with a probability going to one as �9 0, there 
will also be small, random corrections ~�9 That is, if the "fluctuation 
variable" 

1E f 1 X ' ( A , r ) = - -  ea ~ e'-'~z-r/x - drr~,(r,r) (3.1) 
E d / 2  e x E A ~ A 

is considered for any macroscopic time r and region A c A, then it is 
expected that its distribution will converge to a Gaussian for e---, 0. 
Observe that the normalization ,-,E -d/'- of the sum corresponds to a 
standard central limit theorem scaling, since the size of the region A in 
microscopic units grows as ~E -d. The basic problem of fluctuation theory 
is to derive the form of the limiting distribution laws. A physical theory for 
this in the case of the Navier-Stokes system was proposed by Landau and 
Lifshitz in 1959, call the so-called "fluctuating hydrodynamics," which was 
an application to simple fluids of general principles set out in the work of 
Onsager and Machlup. c36> Extended to the more general context of 

" A  hydrodynamics in "Onsager form," their hypothesis was that X~( , r) is 
approximated in the limit E---,0 by ~Adr~ ( r ,  r), where ~( r ,  r) is the 
solution of the stochastic PDE (Langevin equation) 

a ~ ( r ,  r) = - aff~B(p(r, t)) ~ ( r ,  r) - V -j'(r, r) 

with "linearized hydrodynamic operator" given by 

Yf'~/~(p(r, t)) f ( r )  = am[H',,,, ~a(p(r, t)) f ( r ) ]  

and 

(3.2) 

H.~,,~p(p) = ~ (p) -- EL .... /y(p) ~ (p) a/ (3.3) 

822/83/3-4-9 
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The j',,~(r, r) are "random fluxes," which were taken to be Gaussian fields 
with zero mean. In other words, the fluctuations were assumed to be 
governed by the hydrodynamic equations linearized about the deterministic 
solution/~(r,  r), to which were added additional stochastic currents repre- 
senting effects of molecular noise. To complete the theory, a prescription 
was given also for the covariance of the random fluxes, as 

( j ' , , ( r ,  r)j)/s(r', r ' ) )  =2kB.eL,S,~.tp(/~(r, r ) ) d ( r - r ' ) d ( r - r ' )  (3.4) 

where k B is Boltzmann's constant and L s is the symmetric part of the 
Onsager matrix. This is a particular example of a f luc tuat ion-diss ipat ion  
relation, since it relates the covariance of fluctuating currents to the dis- 
sipative Onsager coefficients. 

There are actually a number of distinct--but related--general types of 
FDRs. A recent monograph of Stratonovich (42~ gives a detailed discussion 
of linear and nonlinear fluctuation-dissipation theorems with a wide variety 
of applications. This work makes a classification of FDRs into 1st, 2nd, 
and 3rd types. We shall briefly discuss here the various types following 
Stratonovich, although his terminology for FDRs of the 1st and 2nd kind 
is exactly the opposi te  of that in the Western literature. Note: we f o l l o w  here  
S t ra tonov ich '  classi f ication! Although there is some weight of tradition 
against this usage, we find it supported by the internal logic of the subject. 

In the Stratonovich classification, the FDR of 1st type is a relation 
between noise characteristics and dissipation elements, e.g., the noise 
covariance and the (Onsager) relaxation coefficient at linear level such as 
is given in Eq. (3.4). The Einstein relation (ER) 143) can be considered a 
prototype of such a relation. In fact, if the conductivity 6 is considered to 
be the linear coefficient in the Langevin dynamics 

OU 
.'~i(t) = - a~ - -  ( x ( t ) )  + ~?i(t) (3.5) 

&,q 

and D is taken to be the noise-strength parameter 

then 

( q i ( t )  rb(0) ) = 2D,~d(t) (3.6) 

P(x) ~exp[  - f lU(x) ]  

is the stationary measure if and only if 

(3.7) 

6=flD (3.8) 
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This is a typical FDR of 1st type, and it is the type which is most impor- 
tant for this work. 

The FDR of 2nd type according to Stratonovich is a relation between 
time-correlation functions and (dissipative) response functions to an exter- 
nal perturbation. The Callen-Welton relation t441 was a first case of 
2nd-type FDR for quantum systems. In our previous example, the linear 
FDR of 2nd type is 

/ &v~(t) \ ,  fl(:~At)xflO))= -\6~j(O)/ t > 0  (3.9) 

for expectations in the stationary state, when the external field E(t) is 
coupled to the Langevin equation as 

:~'~(t)=cro.[-~(x(t))+ Ej(t)l +~l~(t) (3.10) 

The ER is also closely related to the FDR of 2nd type if one now considers 
as a response to an external field and D as defined in terms of time 

correlations. The 2nd-type FDR is actually slightly more general than the 
ER. In fact, one can define a conductivity response kernel ~ro.(t)= (~vi(t)/ 
6Ej(0)) ,  giving the delayed current response, with v(t)=~k(t). Taking a 
time derivative of the FDR, one obtains the relation 

fl( vA t) vj(O ) ) = tLj(t) 

In the Fourier representation this becomes 

(3.11) 

tTo.(m)= fl dte-i~ vj(O)) (3.12) 

which gives the full frequency response. It is not hard to show that 
Eq. (3.12) yields ao.(co=O)=flDo.. 

It is a general feature that the FDR of 2nd type implies the FDR of 
1st type (e.g., ref. 42, Section 5.5.3), as one sees here by taking o9=0. To 
obtain the FDi~. of second type requires an appropriate special coupling of 
the external field, which can always be done (ref. 42, Section 5.5.1; also 
ref. 24 and the following section). The relation between FDRs of 1st and 
2nd types is intuitive since the roles of fluctuational and (appropriate) 
external forces are essentially interchangeable. Stratonovich also defines 
another set of relations, FDRs of 3rd type, as those existing between noise 
characteristics and response functions, e.g., random force covariance and 
linear response function. The Nyquist relation t4s~ in electrical circuits 
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between the power spectrum of the noisy EMF (electromotive force) and 
the frequency-dependent impedance is a prototypical example. We will not 
consider this subject here. 

It is our purpose here to consider the extension of the Landau-Lifshitz 
method to the systems without local equilibrium and to develop corre- 
sponding prescriptions for the random fluxes, such as current noise in 
electrical conductors. It seems to be still not generally appreciated that 
there is a generalized fluctuation-dissipation relation which applies to such 
systems. In fact, the theory is rather scattered throughout the literature, 
and we shall develop the subject ab initio here. The presentation we give 
below is therefore not precisely the same as that we have found anywhere 
in the literature of the subject, but it borrows from a number of others. 
An important early work was that of Price, c2~ who proposed a charge dif- 
fusion-current noise relation in semiconductors and plasmas, which we shall 
discuss in the next subsection. The classic work of Fox and Uhlenbeck (46) 
also derived the generalized FDR in the Langevin equation context in a 
way that extends directly to systems without local equilibrium (although 
they did not consider that extension). A paper of Tomita and Tomita (47~ 
made an important decomposition of the systematic flux in the linear 
Langevin equation which is relevant to the FDR, since it corresponds to a 
separation into "conservative" and "dissipative" terms. Our perspective on 
this has been strongly influenced by the work of Graham, 124~ who general- 
ized this decomposition to general nonlinear Langevin equations. In fact, 
we believe that Graham's paper is an important contribution to the subject 
which has been unduly neglected, perhaps because of the abstract style of 
presentation. The last section of this paper will discuss that work exten- 
sively and hopefully will make its physical relevance more clear. A number 
of review articles and books have also been useful to us. The paper of 
Gantsevich et al. (48) contains a wealth of information on the theory of fluc- 
tuations in nonequilibrium electron gases, developed from the point of view 
of Boltzmann transport equations and slanted toward the Soviet work on 
semiconductors. A more general review article is that of Tremblay, 149) 
which discusses these developments and parallel work in the West up to a 
decade ago. The general philosophy of Stratonovich (42) is also very close to 
and has influenced ours. 

3.2. The General ized FDR in Linear Theory 

The FDRs of 1st and 2nd type are established quite easily in the con- 
text of a general linear Langevin equation, as we now discuss. In particular, 
we wish to make clear in our derivation that the FDR is independent of 
any near-equilibrium assumption. We consider, as in the original paper of 
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Onsager and Machlup, a discrete set of variables a = { ai[ i = 1,..., p}. It is 
quite easy to extend the theory to spatially extended systems as above by 
considering the index i to stand for (r, m, a). The variables evolve accord- 
ing to 

~;= - Hu0~j + r/i (3.13) 

a linear relaxational equation, HS~> O, with Gaussian white-noise force 

< r/;(t) rb(t')> = 2ka Qu~( t  -- t ') (3.14) 

The stationary probability distribution of a is then also Gaussian: 

P ( a )  oc exp -2-~B (g-1)~ (3.15) 

where kB-g is the steady-state covariance 

( o~o~j> = kB g o. (3.16) 

To obtain g ones solves the Langevin equation as 

a( t )  = e-H'a  o + ds e-nl ' -slq(S) (3.17) 

and then calculates <~/(t)~j(t)> in the limit t ~  + oo. This yields 

g = 2 I:' dt e -H'Qe _nr, (3.18) 

As a direct consequence, we obtain 

H g + g H - r = 2 Q  (3.19) 

It is this relation which is the FDR of first type and arises as a simple 
"stationarity" or "balance" condition. The above general derivation goes 
back to ref. 46. 

However, Eq. (3.19) does not give the FDR in its most familiar form, 
which involves "dissipative Onsager coefficients" appearing in a "force-flux 
form" of the equations. Even without the near-equilibrium assumption, we 
may define an "entropy" associated to the steady-state distribution P ( a )  as 
s(a)  = k B . log P(a), or 

S ( a )  = S O - -  l ( g - - l ) i  j O~iOCj (3.20) 
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We can also introduce a "force" 

OS 
X i = OOCi (3.21) 

The Langevin equation is then expressed in "force-flux form" as 

d i = -- L,jXj + r h (3.22) 

with L = H g ,  which are the "Onsager coefficients." In terms of these 
Eq. (3.19) becomes simply 

2 Q = L + L  T (3.23) 

It just means that the noise strength Qo is the symmetric part of Lij, 

Q = L  ~ (3.24) 

which is the standard linear FDR of 1st type. Its derivation is completely 
straightforward. The distinction of the general case from the near-equi- 
librium one is that, for equilibrium systems, the "entropy" is the ordinary 
thermodynamic equilibrium entropy, which has been much studied and is 
known for many systems by a theoretical or empirical determination of the 
fundamental equation. For nonequilibrium systems, such as the DDS, the 
quantity s(e), or g, is not readily available. Nevertheless, the relationship 
between the variables Q, H, and g remains valid. 

The terminology "fluctuation-dissipation" is explained in the present 
context by considering the decomposition of L into its symmetric part L" 
and its antisymmetric part denoted L", 

L~j = L ~  + L~. (3.25) 

Correspondingly, one can define a "conservative flux" 

r, = -- L ~ X j  (3.26) 

and a "dissipative flux" 

d, = - L~.Xj  (3.27) 

Since Os/8ei = - X i  and 8Xj/Oo~ = (g-i);j ,  the ri automatically satisfy 

6qs 
- - r , ( ~ ) = O  (3.28) 
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from symmetry of XiXj ,  and 

Or~= 0 (3.29) 

from symmetry of g,y. The first of these implies that the evolution under r~ 
indeed conserves the "entropy" s, while the second is a Liouville theorem. 
Hence, the entire evolution of the "entropy" under the systematic (nonran- 
dom) evolution arises from d;, and is calculated as 

d 
dt s(oO = L;~Z~Xj >~ 0 (3.30) 

The positivity follows because L" is, by the FDR, a covariance matrix, 
which is necessarily positive-definite. Therefore, the general decomposition 
of the linear Langevin equation 

~i=ri-l-di nt-rli (3.31) 

is achieved into parts "conservative" and "dissipative" for the "entropy" of 
the stationary state. The same decomposition was made by Tomita and 
Tomita 1471 from a different motivation, discussed below. 

Note that one can also show easily in this context the FDR of 2nd 
type. The principle is to add the external force F in the equation so that 
the stationary measure is changed by the addition of a linear term F - e  in 
the exponent. It is not hard to show that for this the driven equation must 
be taken to be 

4,.= -L0.(Xj-F A +,7, 

= -- Hijej + Lo.F j + rli (3.32) 

Then the response function G~i(t)=6o~i(t)/~Fj(O ) (which is now deter- 
ministic) satisfies 

(~u(t) = -- Hik Gk:/(t) + L,j~(t) (3.33) 

whose solution is 

Gij(t) = [e -H'L]u O(t) (3.34) 

On the other hand, the linear regression solution to the Langevin equation 
is 

( oq( t) o:j(O) ) = kB[ e -H I,Ig] qO( t )+kB[ge-Hr l ' l ]oO(  t) (3.35) 
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The FDR of 2nd type 

( ~ , ( t )  ~ A o )  ) = - kB[  G,A t) - Gj;( - t ) ]  (3.36) 

follows automatically. 
It is important to note that the FDRs all follow (rather simply!) from 

the assumption of a general description in terms of a random process 
described by a Langevin stochastic equation. No condition of time rever- 
sibility or detailed balance is required. In fact, they are results of the pure 
theory of random processes and involve "no physics." Actually, the physics 
enters from the validity of the description by a Gaussian random process 
with some stable stationary state. This imposes some nontrivial require- 
ment on the microscopic dynamics (Appendix D). 

Although the FDR as such does not require detailed balance, an 
important simplification occurs in that case. In fact, suppose that the 
variables 0( i have time parities el, so that the Onsager coefficient transforms 
under time reversal as 

L~=eiejLij (3.37) 

We are considering a generalized time-reversal transformation in which the 
histories {0~i(t)}--*{oL~(t)=e~e,(-t)}, with e~= _+. If detailed balance 
holds and the OR relations are therefore satisfied, then 

L~.= Lji (3.38) 

so that the decomposition of L into parts even and odd under time reversal 
coincides with the decomposition into a symmetric, or "dissipative," part 
and an antisymmetric, or "conservative," part: L ~  a, L e = L  ~'. Equiv- 
alently, the "conservative" and "dissipative" fluxes are, respectively, odd 
and even under time reversal, 

r i(e.~t)= -eiri(a), di(e.gt)= +eidi(a) (3.39) 

and they can be distinguished a priori on that basis. Without the rever- 
sibility condition, this decomposition into "conservative" and "dissipative" 
terms requires knowledge of the stationary measure, as above. 

In this connection, we would like to make a few remarks on the 
interesting work of Tomita and Tomita (TT). la71 They made as well the 
decomposition of the Onsager matrix L into its symmetric part and its 
antisymmetric part. They referred to the latter as the "irreversible circulation 
of fluctuation" and connected its nonvanishing with the violation of OR, 
interpreted as the symmetry of L. However, it seems to us that TTs inter- 
pretation of their results is somewhat misleading. The presence or absence 
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of the antisymmetric part L" is not related to microscopic reversibility in 
general, as they suggest. In fact, the interpretation of the symmetry of L as 
Onsager symmetry is also wrong in general. It seems to be the source of a 
lot of confusion that the "dissipative" Onsager coefficient is always the sym- 
metric part L", but this has nothing to do with time reversal or Onsager 
reciprocity. Second, it is not in general implied by time reversibility that 
L a = 0, i.e., that L = L s. This is only the case if all the parities ei = 1. While 
this was, in fact, true for the systems TT considered, it need not always be 
the case. An obvious example, already pointed out in this context in the 
classic work of Fox and Uhlenbeck] 46~ is the simple fluid described by the 
compressible Navier-Stokes equations, which has a nonvanishing Euler 
part. The possibility to have such a term here arises from the - 1  parity of 
the velocity field, or momentum density. It is only for the cases with all 
parities + 1, as for the DDS example, that the presence of the Euler term, 
or "irreversible circulation," can be attributed to violation of detailed 
balance. 

3.3. The Correlation Function Approach to Hydrodynamics 

One of the main assumptions in the theory of fluctuations, reviewed in 
the previous section, is that the small spontaneous fluctuations from the 
stationary mean will decay according to the linearized hydrodynamic law 
governing macroscopic disturbances. This idea goes back to the original 
work of Onsager in 1931 and is known as the Onsager regression hypothesis. 
This assumption can be made the basis of a microscopic method for 
deriving hydrodynamics and calculating transport coefficients, the so-called 
"correlation-function method," which was pioneered in work of Kadanoff 
and Martin ~22~ (see also ref. 23). In fact, if Aoci(t)-oci(t)-~i(O), then it 
follows from the linear regression solution (3.35) that 

for t > 0. Hence 

( Ao~i( t) ~i( O ) ) =kB[ e-n 'g]o.-kB . g# (3.40) 

lim -1 (A~,( t )~/(0))  = - k B [ n g ] ;  j 
t ~ 0  I 

= -kBLi j  (3.41) 

The Onsager matrix L,7 can thus be calculated from the correlation func- 
tion (3~; ( t )~ / (0) ) ,  determined by another method, e.g., a microscopic 
calculation. When using the latter, then the limit t ~ co should be con- 
sidered instead, since the time in the Langevin equation must be considered 
a "macroscopic time." The limit of "macroscopic time" r ~ 0 must match 
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to the limit of "microscopic time" t--* ~ .  Although this method was 
originally applied by Kadanoff and Martin to hydrodynamics for near- 
equilibrium fluids, it should be quite general, since its basis is just the 
regression hypothesis. In fact, the method was used already in the original 
paper of KLS to derive the linearized hydrodynamics of their lattice DDS 
model. We shall reconsider the calculation here because it provides an 
important check on the "nonequilibrium distribution method" developed in 
the first section. Also, the original discussion of KLS contained a few minor 
mistakes which this work corrects. 

To begin, let us write down the form of the driven diffusion equation 
derived previously, Eq. (2.61), linearized about the homogeneous state of 
density n: 

0,~(r, t ) =  -c,,(n)Om~(r, t)+D,'i,l(n)O,,Ol~(r, t) (3.42) 

(Again we set E= 1 for simplicity.) Note that the linearized equation con- 
tains only the symmetric part of the diffusion matrix (a feature special to 
the one-component case.) The equation can also be Fourier transformed in 
space, to give 

0,~(k, t) = ic.  k~(k, t) - (k. D .  k) ~(k, t) (3.43) 

where c = c(n), D = D"(n). This is often more convenient since the different 
wavenumber components are uncoupled. If the fluctuation theory of the 
previous subsection is applied, then we should add to this equation a noisy 
current J', as 

O , ~ ( k , t ) = i c . k ~ ( k , t ) - ( k . D . k ) ~ ( k , t ) - i k . J ' ( k , t )  (3.44) 

with 

~ t  ! t (J~(k,t)J~(k,t ' )>=2R~j(k)fi(k +k ' ) f i ( t - t ' )  (3.45) 

Then, from the regression solution, Eq. (3.35), the "structure function" 

= I dr e ik '(~(r,  t) ~(0, 0)) (3.46) S(k, t) 

takes the value for t > 0 

S(k, t ) =  S(k)exp[i(c .  k) t - ( k .  D .  k ) t ]  (3.47) 

Here, S(k) is the static value of the structure function, or stationary 
covariance, which from the FDR equation (3.24) is given as 

k.R(k).k 
S(k) - (3.48) 

k . D . k  
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It is then easy to calculate that 

0 S(k,t) k=O=( 0 ) Ok.----~, ~ S (0)-icmtS(O) (3.49) 

In fact, it follows from the evenness in r of the density-density correlation 
that S(k) is even in k, so that 

In the same way, it is easy to check that 

Ok,,, Ok1S(k, t) ~ = S (0) - 2D,ntS(O) - c,,clt2S(O) (3.51) 

Here we have assumed that S(k) is twice-differentiable at k = 0, an assump- 
tion that will be critically reexamined in the following subsection. If we 
now go back to the microscopic model and identify S(0)=g(n) ,  then these 
results suggest that c, D" should be determined from the microscopic 
dynamics as 

�9 1 1 

and 

D,"~,t(n) = ,-~lim ~ x,,,xl(e'Lrlx~leJ,r,--c,,(n) el(n) t 2 (3.53) 

The right-hand sides of these equalities were calculated in a formal (non- 
rigorous) way by KLS in Appendix 3 of ref. 14. The result for c was 

c.,(n) = j'.,(n) (3.54) 

and the result for D" was 

D';n(n) = 2  -~-. Z - ~  E,(J,,(x, t) Jr(O, 0) ) , r - j ' , ( n )  jfln) (3.55) 

where J(x,  t) is the instantaneous particle current introduced in Eq. (2.44). 
Note that the result for c is exactly that found by the distribution 

function method in the previous section. To compare the results for D, 
the current-current correlation must be evaluated. This was done in 
Appendix 3 of ref. 14, but the result there contained an error (it does not 
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give a symmetric result for DI~,,). A correct calculation (Appendix E; see 
also ref. 50) gives 

E,,(J,,(x, t) J/(Y. s)) = ( c(0, ~,,) ) ,  6 , a 6 x y 6 ( t  - s)  

- O ( t  - s ) (  e Ll'  -~'~/'., ( x ) .  j )  (y ) ) , ,  

- - O ( s - - t ) ( e L l " - ' ) ' l ( y  ) �9 j~,,(X)),, (3.56) 

Substitution into Eq. (3.55) gives 

1 
O,~a(n) = ~ ( c(0. ~,,,)),, 6,,a 

- d, 2- 21<e%,,(xl.j lOl>, 

q_ (etLjI(x) .r T __jm(n)j! (n)l  (3.57) �9 j . , ( o ) ) , , )  . . . .  . '  

Comparison with Eq. (2.83) shows that the "dynamic term" above agrees 
with the result of the distribution function calculation for the symmetric 
part of the diffusion matrix. To verify that the "static terms" are also the 
same, we note that, by GOR, the symmetric and even parts must coincide. 
Using this fact, we can write the symmetric part from the distribution 
method as 

1 
D~,t,; ' 's = - - -  ~ X , (  ' l x ( jm  "" r +J, , ) ) , ,  (3.58) 

2X(n) 

However, this can be explicitly calculated using the identity (2.68), with 
f(t/) =t/z01x-t/y), and the result is 

1 ~x O. em x T D~.t,~ t ' s -  x / ( ( t l , , - - t l .  I j . , ) ) , ,  
2z(n) 

1 
2Z(n } 6h,,( (rl~,,,- qO) J,,,)),, 

1 
= )t2z'n ----7 6t,,,( c(0, ~,,,) ) ,  (3.59) 

(Observe that the result is indeed symmetric, as required by GOR.) Com- 
paring with Eq. (3.57), we see that the "static" term there also coincides 
with the symmetric part from the distribution function calculation. This is 
an important consistency check on both methods. However, the correlation 
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function method in the one-component case is unable to determine the 
antisymmetric part of the diffusion matrix (as defined by the current 
response). 

To complete this subsection, we shall now show that the matrix DS(n) 
is positive-definite and [since z(n)> 0] so also is L"(n), as claimed in the 
previous section. This is important since it guarantees that the "entropy" 
S(n) is a Lyapunov functional for the nonlinear dynamics, monotonically 
increasing in time to its maximum value. The positivity is a consequence of 
the fact that the expression (3.55) for the symmetric diffusion is, in fact, a 
standard Green-Kubo formula, as we now demonstrate. For this we need to 
make some definitions. For local random variables A(x) in the probability 
space of the microscopic process N(x,.) ,  we define an inner product as 

(AIB) , ,  = ~ E,,(A(x) B(O)) r (3.60) 
X 

The elements A(x) subject to the finite-norm condition IIA I[,] = (A I A ) ,  < oe 
[defined modulo total gradients A(x)~A(x)+V~(x), which have zero 
norm] form a Hilbert space. In the physics literature, this is known as the 
Zwanzig-Mori space (e.g., see ref. 23). With our normalization of the inner 
product, 

IINII ~, =z(n)  (3.61) 

by definition. Notice that 

<NI or,,,>,, = ~ E,,(N(x) J.,(O)) r 
X 

=~ (qxj,,(O)) r,, 
X 

= j';,,(n) z(n) (3.62) 

where the last line follows from Eq. (2.43) in the previous section. Thus, the 
Eulerian velocity c,,,(n)=<NlJ,,),,/l[NIl,, is the projection of the micro- 
scopic flux onto the space of conserved variables spanned by { N}. In fact, 
observe that with these definitions the formula (3.55) may be rewritten as 

'~ i 1 f + ~  [ (J,,[N),,(NIJI),.] (3.63) 
D,a(7) = 2 ~  _~. dt (J.,(t)[St),,- (NIN),, 

This is the standard form of the Green-Kubo formula in which the time 
integrand is a current autocorrelation function in the Zwanzig-Mori space 
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with the projection onto the conserved subspace subtracted. It is usual to 
define projection operators 

P [N>(NI Q=I [N)<NI (3.64) 
<NIN>'  <NIN> 

the so-called Zwanzig-Mori projectors, so that Eq. (3.63) can also be 
written as 

D~a(n) = ~ dt <J,,,(t)lQ.J,>,, (3.65) 
/ - . Z V t  ) c~5 

This exhibits D s in an explicitly positive-definite form, since it is the 
integrated autocorrelation of the "fast" component of the current, 
I, ,=Q.J,, .  

It is quite generally true that the Green-Kubo formulas for the dis- 
sipative Onsager coefficients can be regarded as microscopic versions of the 
FDR of 1st type, where now the relaxation coefficients are related to the 
covariance of microscopic phase space functions, the "fast" components of 
currents, and the averages are taken with respect to the steady-state 
measures on phase space. In the case of the DDS, this relation is essentially 
the same as one proposed some time ago by Price ~2~ which relates the 
covariance of electric current noise in semiconductors and plasmas to the 
symmetric part of the bulk charge diffusion matrix. (See also ref. 48, 
Sections 3.2 and 3.5, for discussions of the experimental validity and useful- 
ness of this relation in semiconductors.) The KLS derivation with the 
correlation function method has given this relation an exact microscopic 
basis. 

From the discussion it is clear that the covariance of the "fast" compo- 
nent of microscopic currents should be identified with the covariance 
of noisy currents in the Langevin equation, Eq. (3.44). Therefore, we 
have now a complete set of prescriptions to calculate, in principle, the 
parameters of that equation from the microscopic dynamics. The drift 
velocity c and the (full) diffusion matrix D are given by the already pre- 
sented microscopic expressions, e =j" and the Green-Kubo formula (2.57). 
The noise covariance R is then calculated from the FDR of Price's form: 

R = D"Z (3.66) 

The use of this relation requires that the nonequilibrium entropy s(n) be 
known, in order to calculate x (n )=-1 / s" (n ) .  Of course, it is quite 
generally true that the fluctuation-dissipation relation (3.23) allows one to 
determine the Langevin noise covariance Q from the steady-state 
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covariance g, assuming that the macroscopic hydrodynamics (and the 
linearized operator H) is known. When that is the strategy, some other 
means must be employed to find g, such as the high-temperature series 
expansion of ref. 30. Of course, if one's only interest were the steady-state 
correlations themselves, then it would be an empty exercise to calculate Q. 
However, knowledge of Q allows arbitrary multitime correlations to be 
obtained. These may be of interest, e.g., to describe inelastic scattering of 
light by the steady-state charge density fluctuations. 

3.4. S teady-Sta te  Correlat ions and Hydrodynamics 

If we compare the Price-type FDR (3.66) we derived from the correla- 
tion function method with the FDR at the Langevin level (3.48), 

k-R-  k = (k. D"k) S(k) (3.67) 

then we see that they are consistent if we require that the static covariance 
in the Langevin formalism be wavenumber independent, as 

S(k) =X (3.68) 

This is known  to be general ly  fa l se !  In fact, there is a problem even with the 
existence of the limit as k--* 0. It was observed in ref. 51 from computer 
simulation of the DLG model that the decay of correlations is actually a 
slow power law, like ~ r  -a. This type of behavior has been corroborated 
in stochastic lattice dynamics, like the DLG models, by independent 
calculations using high-temperature series expansions. (3~ Also, the exist- 
ence of the power laws has been confirmed in more phenomenological 
Ginzburg-Landau models of DDS by field-theoretic RG calculations. r 
The generic behavior of the correlation in space seems to be 

C(r) ~ Y~i bir~ 
ra+ , - (3.69) 

corresponding.to a behavior in wavenumber space 

"k" Y'.ibi k2 
(3.70) 

Hence, the wavenumber independence predicted by the naive form of the 
Price FDR (3.66) is contradicted by both simulations and microscopic 
calculations. This may be the proper point to remark that the simple 
proportionality proposed by Price is known also to be violated at the 



434 Eyink e t  al. 

kinetic level of description due to correlations created by collisions: see Sec- 
tion 2.2 of ref. 48. It should be emphasized that there is no inconsistency 
of the long-range correlations and the Langevin FDR (3.67). In fact, as 
was pointed out in ref. 30, the correlation behavior exactly like that in 
Eq. (3.70) is recovered from the Langevin FDR (3.67) when the simple 
proportionality of R and D ~ is abandoned. The crucial difference from the 
naive form of the Price FDR is the appearance of the dot products with k, 
which allows S(k) to be wavenumber dependent even with D, R constant. 
This appearance of k is due to the fact that really only the divergence V.  J' 
of the noisy current appears in the fluctuating hydrodynamic equations. 

Since the conclusion of the correlation function argument in the 
previous section seems to be generally false, the question is raised which 
of the assumptions it employed might be erroneous. In addition to rather 
plausible assumptions--such as the Onsager regression hypothesis--there 
was also, as we have already emphasized, a rather strong analyticity 
assumption on the structure function S(k, t) at small wavenumber. This 
assumption is in contradiction with the observed long-range correlations, 
or their wavenumber version (3.70), which implies that the limit 

z(n, f~) -- lim ~ eikX( qxqO) . (3.71) 
k ~ 0  

x 

will exist but depend upon the direction vector k. In other words, the struc- 
ture function cannot be expected to be even continuous at k=0 .  
Nevertheless, it is possible to repeat the KLS correlation function argu- 
ment under these weaker assumptions and, in that case, exactly the weaker 
FDR (3.67) is reobtained, fully consistent with the Langevin formalism and 
the microscopic results on long-range correlations. This is done in 
Appendix F of this paper. In consequence, the correlation function deriva- 
tion of the linearized hydrodynamics seems to be consistent with all other 
known results. 

However, the derivation of the nonlinear hydrodynamics in Section 2 
by the method of nonequilibrium distributions is in worse shape. One of its 
main assumptions was that there is a unique relation between the density 
n and chemical potential 2, as 2=2(11). Integrating the function X-~(n, k) 
from Eq. (3.71) with respect to n, one would instead expect to have inde- 
pendent relations 2(77, k) for each direction vector f~. The problem shows 
up already at the level of our fundamental large-deviations hypothesis in 
Section 2.1. Indeed, simple examples show that when the static structure 
function is discontinuous at zero wavenumber, the large-deviations 
hypothesis must undergo some substantial revision. Even if it remains true, 
the resulting function s(n) may depend upon the exact way in which the 
sequences of volumes A are taken to infinity! This can already be seen to 
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occur for a Gaussian random field of spins {ax: x~ Z d} when the static 
spin structure function 

S(k) = ~ eikx< O'x Oo> (3.72) 
X 

has the form of Eq. (3.70) (or is otherwise discontinuous at k = 0). In fact, 
in that case, the "smooth" version of the volume-average magnetization 

m~(q~) =ea~ cp(Ex) a x (3.73) 
X 

satisfies the LD hypothesis for every square-integrable test-function cp, 7 
with the quadratic entropy function 

m 2 
s~,(m) = 2K~ (3.77) 

in which 

K~ - (21 )a  f dak [O(k)[ 2 z(k) (3.78) 

Because of the k dependence of X, the result clearly depends upon the 
precise test function adopted. For instance, if a function 

(0(x) = IffI 1 
,=, Fa, z t -~176 

7 This can be proved most easily by calculating the free energy 

f,.,(h)=_edlog<exp(h~o(,x)a,)> (3.74) 

to be 

Since its limit exists, 

h 2 1 I[ dak [~(k)l a S(ek) (3.75) f~.,(h)---T.(~-~n)a -~/~.~/,] 

f~(h) =- lim f~. ,(h) = �89 2 (3.76) 
~ 0  

and is differentiable for all real h, Theorem 11.6.1 of Ellis 1321 applies. 

822/83/3-4-10 
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were chosen, corresponding to the rectangular parallelepiped [ - a l ,  a t ]  x ...  
x [ - -ad ,  ad] scaled to infinity, then the function s~o(m) obtained would 

depend upon the aspect ratios of the box sides. This may seem an artificial 
mathematical  example, but it is just the Gaussian model of a uniaxial 
ferromagnet/ferroelectric with dipolar interactions, which has appeared in 
studies of the critical behavior of those systems. 153~ It is rather well known 
for dipolar systems that the thermodynamics may be shape dependent (-'3~ 
and the structure-function singularity in that case has even been experimen- 
tally observed/54) However, it is perhaps less surprising to encounter such 
phenomena in systems with long-range forces, rather than in the D L G  
models where all particle interactions are short ranged. 

Since the nonequilibrium distribution function method used rather 
crucially the relation 2(n) between chemical potential and density to guess 
the correct modification of the reference measure to produce a given 
smooth density profile, it is unclear to us how to proceed when that rela- 
tion breaks down. Therefore, it is not clear to us that the nonlinear drift- 
diffusion equation of the form of Eq. (2.61) even still holds in the general 
case! It should be stressed that the derivation of hydrodynamics in Section 
2 was based upon the explicit assumption of fast decay of correlations, and 
its validity is not questioned in such cases. Situations with such "fast 
decay" do exist, such as the ASEP discussed in Appendix C, whose station- 
ary measures are completely uncorrelated (product measures), and, more 
generally, D L G  models of "gradient type" (see ref. 14, Appendix 4). These 
even include cases where the measures are not Gibbsian)  55" s6) However, it 
is rather disconcerting that such situations seem, according to present 
evidence, to be nongeneric and, in general, the long-range correlations and 
discontinuous susceptibility at zero wavenumber must be expected. On the 
other hand, we know of no experimental evidence for these phenomena in 
physical examples of DDS, although they should, in principle, show up 
clearly in electromagnetic scattering from the homogeneous steady state. 8 
We regard the reconciliation of the long-range correlations and the non- 
linear hydrodynamics to be one of the main outstanding theoretical puzzles 
in the driven-diffusive systems. 

8 Note that the k -4 Rayleigh peaks which have been observed t57~ in the steady states with 
temperature gradients have a different character. These latter systems are local equilibrium 
states and the physical space correlation is there ~r -~d-'-~ but proportional to e-" (or the 
square of the temperature gradient.) Thus, while longer range than those considered above, 
the correlations in those states are weaker, locally vanishing as �9 --* 0. It seems to be harder 
to realize the periodic geometry of the DDS than the steady states driven by boundary con- 
ditions, making experimental study difficult. 
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4. LARGE H Y D R O D Y N A M I C  F L U C T U A T I O N S  

4.1. A General ized FDR for  the Nonl inear  Fokker-Planck 
Equation 

In the previous section we considered the problem of constructing the 
proper Langevin model of the small [O(ea/2) -] fluctuations about the 
hydrodynamic behavior governed by the driven diffusion equation (2.61). 
However, there are also very rare large fluctuations of O(1). For the 
description of these there are a number of formalisms in the literature: for 
example, nonlinear Fokker-Planck and Langevin equations, or nonlinear 
Onsager-Machlup action functionals. For a discussion of each of these and 
their interrelations see refs. 7, 37, and 58 and references therein. What we 
shall investigate here is the possibility of applying such methods also to 
systems without local equilibrium, focusing on our main example of the 
DDS models. In general, the same types of dynamical and statistical 
assumptions enter into the derivation of the fluctuation theory as into the 
derivation of the hydrodynamic equations themselves. Therefore, we believe 
that the "level-2" nonequilibrium distribution method used by Zubarev and 
Morozov c7~ could be also successfully applied to such systems (at least in 
the "fast-decay case" discussed in the last section). 

However, rather than carry through such a microscopic derivation 
here, we would like to point out a quicker route to the final result, which 
may be more generally useful. This method exploits the fact that 
hydrodynamic equations derived by the previous procedure are automati- 
cally in the "Onsager force-flux form." In that case it is possible to invoke 
a general fluctuation-dissipation relation of first type for nonlinear Fokker- 
Planck equations, which allows one to write down directly the fluctuation 
theory by inspection of the hydrodynamic equations without further 
calculation. Graham ~24~ formulated the FDRs we find useful in this context 
and, particularly, emphasized their validity without any restriction of time 
reversibility, even at the macroscopic level. (We should point out that other 
nonlinear FDRs of a different character and with their own specific 
applications ate discussed by Stratonovich. ~42J) It may be that this work 
has not received sufficient attention because of its abstract style and its 
formal differential-geometric language. Therefore, we would like here to 
illustrate its usefulness in the very concrete setting of electrical current- 
carrying systems, where it will be shown to give a nonlinear generaliza- 
tion of Price's noise-diffusion relation. Furthermore, we shall present a 
simplified version of Graham's relation, which turns out to avoid the 
geometric complexities of his original work but to be perfectly adapted for 
application to spatially extended, macroscopic systems. The rest of this 
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subsection will be devoted to the first task of explaining the generalized 
nonlinear FDRs of Graham in our simplified version and then comparing 
them with his more general formulation. 

The most arbitrary Fokker -P lanck  equation in the p variables 
{~;I i =  1 ..... p} may be written in the form 

8P a " 02 
~ - (  , t ) =  - O - ~ [ J ' ( a ) P ( a , t ) ] + ~ [ Q V ( a ) P ( a , t ) ]  (4.1) 

where the sum over repeated indices always goes from 1 to p and we have 
chosen notations in close accord with our discussion of linear Langevin 
equations in Section 3.1. The Fokker -P lanck  equation itself corresponds to 
the Ito stochastic differential equation 

0~i = j i ( a  ) i l, + g,,(~) r/ (4.2) 

in which r/"(t) are white-noise forces with zero mean and covariance 

(r/"(t) r/v(t')) = 2fi"vfi(t - t ') (4.3) 

and the functions ; gj,(a) are a set of multiplicative noise strengths such that 

QV(a) =g~,(ct)g~(a) (4.4) 

(Throughout  this section we take kB = 1 for simplicity.) All of the analysis 
we shall make here depends upon a crucial assumption on the Fokke r -  
Planck diffusion matrix Q(~t), 9 namely, that it is "divergence-free" in the 
sense that 

O QO( a ) 
00c------- 7 -  = 0 (4.5) 

As shown in the original paper of Graham,  c24) and as we shall discuss 
further below, results similar to those obtained here may be obtained 
without this assumption. However, although it is a rather special restriction 
in the class of general Fokker -P lanck  equations, we shall show that the 
spatially extended, conservative systems always satisfy this assumption 
automatically and that it provides a suitable basis for our applications. 

9 Note that the Fokker-Planck equation is itself a driven diffusion equation, but describing 
flow of probability in the state space of the a's rather than of particle number in physical 
space! No confusion should result when we use the standard terminology of "diffusion" for 
Q and "drift" for J, qualified, if necessary, by the adjective "Fokker-Planck." Also: the 
adjective "nonlinear" is used here only to indicate that the corresponding Langevin equation 
is nonlinear. 
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Under this single assumption, Eq. (4.5), we now show that the 
systematic part of the Langevin dynamics, the Fokker-Planck drift vector 
J;, may be decomposed into a "conservative" part r; and a "dissipative" 
part d ~, 

J'(a) = ri(a) + d'(a) (4.6) 

in a way quite analogous to our decomposition for the linear Langevin 
dynamics. (Of course, corresponding to different choices of Q there will be 
different decompositions of J!) As in the linear case, making the decom- 
position requires knowledge of the stationary measure Po(a), or of the 
corresponding "entropy" defined by 

S(a) = log Po(a) (4.7) 

The key point of the argument is to use the "divergence-free" assumption 
(4.5) to rewrite the Fokker-Planck equation as 

cOP a cO " cO 
-~-( , t) = ---[j'(a)cOod P(a, t ) - Q ~  ~ P(a, t)] (4.8) 

We can then define 

d i ( a  ) _ QO.(a ) O S ( e )  
Ocd (4.9) 

and 

ri(~) =- ji(a) -- di(a) (4.10) 

Substituting P = e  s into the Eq. (4.8), we find that the Q diffusion term 
cancels with the d part of the drift, giving 

a 
0---- 5 [ri(a) e s~"~] = 0 (4.11 ) 

This expresses the stationarity of P0 = eS under the deterministic evolution 
by r alone. 

We can further verify that the above decomposition corresponds to 
one into "conservative" and "dissipative" parts, and, indeed, puts J into the 
"Onsager form" with respect to the potential S. To see this, we identify 
L~" = QO, which gives 

d i ( o t )  = _ L s ( a  )o"  Xj(a) (4.12) 



440 Eyink e t  al. 

in terms of the "force" 
OS(a) 

Z i (a )  = O~ i (4.13) 

Furthermore, following an idea of Graham, I-'4~ we represent the divergence- 
free vector rie s as 

ri( a ) e s'"~ = OFO( a ) 
Oct j (4.14) 

with F '7 antisymmetric, so that 

,. OS(a) . OL~ (4.15) ri(ll) =L~(a)  ~ + -  0e j 

in terms of a new antisymmetric matrix L~ ~ F~ -s .  Together Eqs. (4.12) 
and (4.15) give the representation of the full drift 

OLd 
j i ( ~ )  = _ LO'(a) X j (a )  + 0--- 7 (4.16) 

with 

LU(a) = L~(a) + L~(a) (4.17) 

The latter is now naturally interpreted as the "Onsager coefficient" and 
Eq. (4.16) is in the usual "force-flux" form except for the additional 
divergence term OL~/aeL In fact, for the applications we shall consider it 
will be generally true also that 

U 
O L " ( a ) = o  (4.18) 

for the same reasons which imply the divergencelessness of L ~ (see below). 
In that case, the standard Onsager form is obtained. Furthermore, it 
follows under the condition (4.18) that the r part of the drift enjoys the 
Liouville property, or divergence-free condition 

Or;(a) 
= 0  (4.19) 

by a direct calculation. Therefore, r is indeed "conservative" in the sense 
that 

OS(a. ) ,.i(~) ~.. 0 (4.20) 
OoU 
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which follows from the combination of Eqs. (4.11) and (4.19). In that case, 
the entire change of S under the systematic evolution is due to d, which 
gives 

d OS(a) ,i, \ 

s ( a )  = ~ a t a j  

0 = L,.(a) X,(a) Xj(a) 

>/0 

Therefore, d is truly the "dissipative" part. 
From these considerations we can see that the identification 

(4.21) 

L!{(a) = Q~(a) (4.22) 

is in fact a nonlinear extension of the FDR of first type, of the sort estab- 
lished in the linear Langevin case in Section 3.1. It was first obtained (in 
a more general setting) by Graham/z4) Before discussing his results, let us 
reformulate the relation in a way directly useful to us below. The starting 
point above was the Fokker-Planck equation itself. However, it is instead 
our goal to deduce that equation, having in hand the microscopic deriva- 
tion of the hydrodynamic law in the Onsager form. Since the systematic 
part of the Langevin dynamics must be the deterministic hydrodynamics 
itself, we would like to have a way to guess the proper choice of the noise 
to add to it. For  that purpose, we may reverse the previous considerations 
to derive a result expressed formally as follows. 

Propos i t ion  1. Consider the Fokker-Planckequat ion (4.1 with the 
divergence-free condition aQU/aa j = 0. If J ; =  r g + d / with (O/O~i)[fle s] = 0 
and di=L~ j, then QU-  0 - L  s implies that Po=e s is stationary. 
Furthermore, when also OL~/Ood=O, then Po=eS stationary and non- 
degenerate implies conversely that QO = L o'. 

Here "nondegeneracy" of P0 just signifies that 02Po/OCd Ood is a non- 
singular matrix for almost all a in the state space. We leave the elementary 
proof of this proposition to the reader. We note only that its statement 
specifies--under the expressed condit ions--the unique choice of the noise 
strength to obtain the stationary measure P0--eS. 

In his original work, Graham c24~ obtained the equivalent decomposi- 
tion as that above in the setting of the most general Fokker-Planck equa- 
tion, without the "divergence-free" condition (4.5). His strategy was to 
redefine the notion of "derivative" in order to make the condition always 
true! In fact, it is possible to take the Fokker-Planck diffusion QiJ(a) as a 
contravariant "metric" tensor defining a Riemannian geometric structure in 
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the state space of the a's. In that case, one can take the associated defini- 
tion of "connection" and "covariant derivative" so that the metric tensor 
itself has vanishing covariant derivative: 

0 _  Q,~ - 0 (4.23) 

expressing that "lengths" are invariant under the "parallel transport" in 
state space. [We follow the standard device of denoting the covariant 
derivative D/Do~ k by (');k.] This stronger condition implies at once the 
zero covariant-divergence result Q~j = 0. In that case, it is not hard to put 
the Fokker-Planck equation into a completely covariant version 

O , P  = - ( j i p  _ QUp;j); ; (4.24) 

identical in structure to Eq. (4.8). Note here that P and J~ are not  the same  
as those above, but correspond also to covariant versions. 

Having arrived at Eq. (4.24), Graham then derived the same decom- 
position as ours above, with exactly the same argument, simply replacing 
ordinary derivatives with covariant derivatives everywhere. Note that 
Graham's decomposition is the full nonlinear generalization of that intro- 
duced by Tomita and Tomita ~47~ for linear Langevin dynamics. While 
Graham did not explicitly state that the identity between Q,7 and L ~ was 
a type of FDR nor even mention the relation to "Onsager form," he did 
make a special emphasis of the fact that the F D R  o f  second  type  extended 
to this general Fokker-Planck context without, in particular, any assump- 
tions on time reversibility. This required a special coupling of the external 
force, constructed according to the principle that the stationary measure in 
the presence of forces F~ should change by the exponential modification 
~: exp[Fi~r (see also ref. 42, Section 5.5.1). The correct way to achieve 
this is by introducing the force into the Onsager form of J~ as 

J~ = - L o( X j  - Fj) + (L~);j (4.25) 

If one defines as usual the response function Gu(t)  = ( 6or t ) /6Fj  (0)) t o this 
imposed force, then Graham showed that 

(dci(t) od(O) ) = - [ Go(t)  - GJ'~( - t) ] (4.26) 

just like the usual FDR of second type. (In fact, we can obtain the same 
result also in our restricted context.) Observe that it is necessary in general 
to know the stationary measure Po in order to make the appropriate 
coupling of F;, since the decomposition of J~ into r ~ + d  ~ used S. As 
Graham observed, the only role of time reversibility--when it is present--is 
that it allows this decomposition to be made a pr ior i  on the basis that r; 
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is odd and d i even under time reversal. These statements are equivalent to 
the well-known "potential conditions" of Graham and Haken for detailed 
balance, ~59J and they imply that the Onsager matrix L'7(a) obeys the 
Onsager reciprocal relations e iej L g( e �9 a)  = L Ji( a ). ~o 

4.2. Fluctuating Equations for the Driven Diffusion Model 

We now turn to the problem of constructing the nonlinear fluctuation 
theory corresponding to the drift-diffusion equation (2.61). As discussed 
above, we make no attempt here to derive it microscopically, but simply 
assume it to exist and then use the previous results to restrict its form. To 
be more precise, we make the following hypothesis. 

Hypothesis 2. There exists a Langevin description of the nonlinear 
fluctuations of the form 

O~n = -- 0,,[j,,(n) -- ED,,t(n ) Otn + ed/Ej'm] (4.27) 

with the stationary measure 

P;[n] oc e x p { e - d S [ n ] }  (4.28) 

Let us say a few words to justify some particular aspects of the 
hypothesis. First, it is essential that the equation preserve the feature of 
local particle conservation, since that is a fundamental property of the 
microscopic dynamics. Therefore, the Langevin force ought to be added as 
an additional "noisy current" to the driven-diffusion equation (which must 
be recovered in the e--* 0 limit.) The basic assumption is that the correct 
stationary measure of the Langevin dynamics is that given in Eq. (4.28). It 
seems reasonable from the way in which s(n)  was defined in terms of the 
fluctuation probabilities for density n in the stationary states of the 
microscopic dynamics. Since S[n]  =IA ddrs (n ( r ) ) ,  the main assumption 
involved here is a "locality property" of static fluctuations in the extended 
system, which ought at least to be valid in the "fast-decay" case. From a 
physical point of view, the hydrodynamic density which appears in these 
equations is supposed to represent "coarse-grained values" obtained by 
averaging over "mesoscopic" cells of size intermediate between the scale of 
the particles and the system size. ~ For such variables there will be 

~0 Without  the reversibility assumption,  rather formal "generalized" OR and potential condi- 
tions can be formulated also in the nonlinear Fokker-Planck context; e.g., see Section VI.B 
of ref. 40. 

II More formally, the cells are of  linear dimension / o ~ e  ~' with some 0 < 7 <  1 in the limit 
�9 0, with the macroscopic domain A fixed. 
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simultaneously nonlinear effects of the dynamics and strong stochastic 
influence of the molecular noise. Because of the coarse-graining procedure 
these hydrodynamic fields should contain no modes smaller than the cell 
size, and it is simplest to represent them mathematically by Fourier series 
truncated at a wavenumber k0 the inverse of the cell diameter lo, as we do 
here, or alternatively by discretization on a lattice with grid unit lo. Since 
the theory of stochastic PDEs is difficult, it is desirable even from a purely 
mathematical point of view to define the nonlinear Langevin dynamics 
instead as a stochastic ODE for a finite set of variables (Fourier modes or 
lattice field variables). For a further discussion of the microscopic deriva- 
tion of such equations by "coarse graining" see Zubarev and Morozov, (7~ 
Section 2.1. We shall also comment further at the end of this section upon 
the physical uses (and limitations) of our nonlinear fluctuation equations 
for the DDS. 

The basic problem is to guess the form of the noisy currents in Eq. (4.27). 
We shall first present here the result, and afterward give its justification. 
The Langevin currents are assumed in the particular form 

j,,,(r," r ) =  X//EE g,,,(n(r,~ r))q~(r, r) (4.29) 

a = 1 ..... d, where q is a spacetime white noise with covariance 

(~/~(r, r) r/p(r', r ' ) )  = 26~,6a(r - r') 6(3 - r') (4.30) 

[-Observe that 6 ( r -  r') here denotes a "coarse-grained" delta functional, or 
A ( r - r ' )  in the notation of Zubarev and Morozov. (71] This choice of the 
noisy currents is not entirely necessary, but does have some convenient 
features. For example, the discussion of Morozov (58) implies that for this 
form the Ito and Stratonovich interpretations coincide. This allows us to 
use ordinary rules of calculus. With this choice of noise, our proposed 
Langevin equation then leads to the Fokker-Planck equation 

~ P(n, r) = - f ddr ~ J(r; n) P(n, r) 

+ e,, + , f d ,,r ~ d a r, 6 ~- 6n(r) 6n(r') Q(r, r'; n) P(n, 3) (4.31) 

where 

J(r; n) = - O,,,[j,,,(n(r) ) - eD ,n(n(r) ) Otn(r) ] (4.32) 

and 

Q(r, r'; n ) =  -O,,[Q,n(n(r)  ) Ot6(r-r ' )]  (4.33) 
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with 

m f r  Q,u(n) - g,,,(n) g/(17) (4.34) 

Any other choice of the Langevin equation which leads to the same 
Fokker-Planck equation is stochastically equivalent and would suffice just 
as well. For example, other square roots of the operator Q could be 
employed in the noise term, such as the positive one (e.g., see Section 6 of 
ref. 37), but it is more convenient to choose the local form above. The 
essential part of our choice is that the matrix Q must be taken as 

Qt,,(n) = L'~,,(n) (4.35) 

with L" the Onsager matrix calculated in Section 2. This is given, for 
example, as z(n) times D s written as the Green-Kubo formula in Eq. (3.65). 
Therefore, the {g,~,} are introduced here as an orthogonal set of eigen- 
vectors of Q (normalized to have length given by the square root of the 
corresponding eigenvalues.) 

The motivation for this prescription is that the systematic part of the 
equation, the driven diffusion dynamics, may be written in the form 

J(r; 17) = r(r; n) + d(r; n) (4.36) 

with 

6S(n____) ( .  

r(r; n) = --c(n).  •,n + E J dar ' L,,(r, r'; n) On(r') (4.37) 

and 

6S(n) (4.38) d(r; n ) = e  dar' Ls(r, r'; n) 6n(r'-----~ 

with 

L(r, r'; n) = - O,,[L,a(n(r)) Ot6(r- r ')] (4.39) 

[Actually, as already observed, the L,  term in (4.37) vanishes for the one- 
component system, but we shall not make use of this fact.] We shall show 
that the r term leaves invariant the proposed stationary measure: 

ddr 6 1 ~  (r(r; n) e ~-'st'~) = 0 (4.40) 
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Furthermore, we shall show that the fundamental property of the noise 
covariance and the Onsager matrix (kernel) are satisfied: 

f d ,  dL(r, r'; 17) r'; n) 
d r  -6--nn(~-, f ddr' 8QJ;ir ' )  = 0  (4.41, 

From these facts we can infer by our previous proposition that the chosen 
form of the noise will lead uniquely to our desired stationary measure�9 It 
will turn out, incidentally, that the factor e -d in exp(e-ds)  is fixed only by 
the requirement that 

d(r; n ) = e  d+l f d d r  ' Q(r, r'; n) �9 e - ' /6S(n)  (4.42) 
0n(d) 

while all the other terms satisfy invariance with an arbitrary factor. 
The fundamental property of the Onsager matrix, Eq. (4.41), was 

already demonstrated in the work of Zubarev and Morozov, ~71 Appendix E. 
In fact, it is a general property of kernels of the form in Eqs. (4.33), (4.39). 
For completeness, we will repeat the proof here. The argument uses the fact 
that the UV regularization procedure is space-reflection symmetric. By 
explicit calculation, 

6L(r, r'; 77) 
&(r") 

- O,,[Li,n(n(r)) O ( r - r " )  016(r - r ' ) ]  (4.43) 

Setting r " =  r' in this expression gives then 

OL(r, r'; n) 
~n(r') 

O,,,[L',n(n(r)) 3 ( r - r ' ) ] .  0/3(0) (4.44) 

However, 

VfU(O)= 1--  ~ k = O  
IAI k<~0 

(4.45) 

so that the result follows. Notice that the property is basically a conse- 
quence of the locality of the hydrodynamic equation and the gradient con- 
stitutive relation. The same argument applies to Q and to general Onsager 
kernels for spatially extended, conservative systems. 

To establish the invariance condition (4.40) it is desirable to decom- 
pose r = r,. + i" a where 

r,.(r; 17) = - c(n). V,n (4.46) 
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and 

~S(n) 
r,,(r; n) = �9 dUr ' L~(r, r'; n) 3n(r'--~ (4.47) 

We show the invariance separately for each term. The conservation 
property 

dd r 0S(n) r,.(r; n) = 0 (4.48) 
I ~n(r) 

was already shown in Section 2: see Eq. (2.55) there. Likewise, we can 
check that r,. satisfies the Liouville property 

f dar ~r,.(r; n) 
On(r-------~ = 0 (4.49) 

when it is defined with a UV regularization by high-wavenumber cutoff. In 
fact, the argument applies to a general "Euler term" of the type of a local 
conservation law: 

r~(r; p) = - V-j~(p(r)) (4.50) 

It is then easy to see that 

firS(r) _ _ ~ 0j~ (p(r)) �9 V~a(0) (4.51 ) 
~ 6p~(r) 0p ~ 

Since VOd(0)=0 the Liouville property follows. The Liouville property 
(4.49) and the conservation property (4.48) together imply the invariance 
condition (4.40) for r,.. Finally, we note that 

r~,(r; 17) �9 f da r . . . . .  ~S(n) �9 (4.52) = L~tr, r ; n ) ~ +  If  ddr'oL"(r'r';n)3n(r') 

since the added term is zero by the property (4.41) of the Onsager kernel. 
Therefore, r~, satisfies also the invariance condition (4.40), since this last 
expression has exactly the general form (4.15) of a term with that property. 
This completes our verification of the conditions of the Proposition 1 for 
the DDS. 

We may write out explicitly the final form of our conjectured Langevin 
equation as 

07n = -O,,[j,,,(n)-�9 0in +�9 ll/2g~,(n ) q,~] (4.53) 
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As in the case of nonlinear fluctuations at thermal equilibrium studied by 
Zubarev and Morozov, tT' 581 state-dependent or "multiplicative" noise is 
required to produce the correct stationary measure. The sense of validity of 
the equation should be that it yields asymptotically correct predictions for 
fluctuations of the hydrodynamic variables in the limit e ~ 0, even for those 
which are O( 1 ), or macroscopic in size. It also contains the information on 
small fluctuations o(ed/'-). Indeed, if we consider its linearized form for 
solutions 

n(r; r) = n* + ea/2~(r; t) (4.54) 

then we recover the linear Langevin equation (3.44) proposed in Section 
3.2. In particular, the noise correlations in that case obey the (naive) Price 
relation (3.66), which the nonlinear FDR, when applied to the DDS, 
generalizes to large fluctuations. 

Note, however, that Eq. (4.53) does not apply near the critical point 
of the DLG model, even approaching the transition from the high-tem- 
perature side. The reason is that it is valid in the limit E ~ 0 with all other 
length scales fixed. This means that it can be applied near the critical point, 
but only so long as the inequality L j  ~> ~ is satisfied by the macroscopic 
gradient length L3 (over which hydrodynamic profiles sensibly change) and 
the correlation length ~.~2 Therefore, Eq. (4.27) is not adequate to calculate 
critical scaling properties of the DDS, and should be distinguished from the 
"mesoscopic Langevin equation" discussed by Schmittmann and Zia, ~'51 
which is more in the spirit of the "time-dependent Ginzburg-Landau equa- 
tions" of critical dynamics. However, the present equation will be adequate 
to account for the large-fluctuation behavior in the high-temperature 
regime. We now turn to this latter topic. 

4.3. Onsager-Machlup Lagrangian and Least Excess 
Dissipation 

We now wish to consider, briefly, the theory of hydrodynamic &rge 
dev&tions for the DDS. This topic is reviewed in a general way by 

�9 Eyink, ~371 where the subject was developed for local equilibrium systems on 
the basis of reasonable hypotheses, motivated by rigorous results 16~1 and 
prior physical theoriesJ 36'621 In fact, it was conjectured at the very end of 
that work that the basic results should extend also to electrical conducting 
systems. Here we shall make concrete that proposal. 

t_, For the definition of the correlation length in this context see Section 2.2 of ref. 15. 
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The basic goal is to deduce a formula for the probability of occurrence 
of a "density history" {n(r, r)} other than the solution of  the hydrodynamic 
equation. Of course, this probability is exceedingly small. The "large-devia- 
tions" formula quantifies this statement. We shall just sketch the main lines 
of the derivation and refer mostly to the literature for details. The starting 
point is our proposed Fokker-Planck equation (4.31). This equation may 
be solved for the transition probability in the form of a path integral as 

 nexp[ ] I,,ol =,,0. ,,l~ =,,I ~ da L(n(cr), li(a)) (4.55) 

where the integration is over all histories with the specified initial and final 
conditions. The functional in the exponent, the so-called Onsager-Machlup 
Lagrangian, is of the form 

L(n, ~i) = �88 f A d'r  f A d"r' G(r, r'; n/ 

• [li(r) + V. ](n(r)) -- eV. (L(n(r)) �9 V2(r)) 3 

• [li(r') + V'. ] ( n ( r ' ) ) -  cV' .  (L(n(r ' ) ) .  V'2(r '))] 

+ O(# ~§ ~) (4.56) 

evaluated just to leading order. G(r, r ' ;n)  is the kernel of the Green's 
operator, which is the inverse of the elliptic operator with the Onsager 
kernel L(r, r'; n), 

- V. [L(n(r))  - VG(r, r'; n)] = 6a(r - r') (4.57) 

specified here with periodic b.c. on the domain A. See Graham. ~25~631 
Particular sets of histories (cylinders) may be defined by a sequence 

of values at consecutive times: n ( r l ) = n l  ..... n(rp)=np.  By the Markov 
property, their probability is given in the steady state as 

e ( { n ( r , )  = n, ..... n(r~)  = n A )  

@nexp eT;-Tj ~ drL(n( r ) , l i ( r ) )  (4.58) 
--I n ( r l  ) = h i  ,....n{ rp) = n p l  - - ,  

In the limit e---, 0 this integral may be evahmted by steepest descent, 
yielding 

P({n(r,) = n ,  ..... n ( r , )  = n , }  ) 

~ e xp  _ e - l a +  1) min dr L(n(r), li(r)) (4.59) 
{ n ( r l ) = n l , . . . , n ( r p l = n p }  - - ~  
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The minimization is over all histories satisfying the constraints. The for- 
mula, giving an exponentially small probability of the event as �9 ~ 0, is a 
typical result of large-deviations type. The same result could be obtained 
by extending formally to our Langevin equation (4.53) the rigorous 
theorems of Freidlin and WentzeU for weak stochastic perturbations of 
O D E .  (64) (Those theorems do not literally apply. Although we deal for each 
finite �9 with stochastic ODEs, the number of degrees of freedom also goes 
to infinity as � 9  Only for special cases 13 has such a result been estab- 
lished. 165~) 

The final result, Eq. (4.59), has a simple physical interpretation which 
can be elucidated in terms of driven hydrodynamic equations 

0rn(r, r) = - V. [j(n(r, r)) - �9 r)) .  (F(r, r) + V2(r, r))] (4.60) 

with an additional external field of the form 

F(r, r ) =  -VU(r ,  r) (4.61) 

instantaneously for some potential U. Note that this is exactly the same 
coupling of the external field which would be required for the validity of 
the FDR of second type. The first observation is that, given a history 
{n(r, r)}, it is possible to find U as a functional of n and 1/at each instant 

U(r; n, r~) =~A dar' G(r, r'; ii) 

x [~i(r') + V'. j(n(r')) - �9  (L(n(r')) �9 V'2(r'))] (4.62) 

so that U(r, r) = U(r; n(r), li(r)) defines the unique potential field { U(r, r)}, 
periodic in the domain A, required to produce in Eq. (4.60) the desired 
history {n(r, r)}. It is a simple calculation to show, further, that 

L(n, ~i) = ~ ~,1 dar L,,a(n(r)) 0,,, U(r) c3 / U(r) (4.63) 

Thus, the probability formula for history {n(r, r)} becomes 

P({n(r, r)} ) ~ exp -�9 f dr dar Lm,(n(r, r)) Fro(r, r) F,(r, r) 

(4.64) 

~The model treated in ref. 65 corresponds to our Eqs. (4.31)-(4.33) with J(r;n)= 
-O,,,(b"(r, n)n) + ~OmC~l(a"'/(r)n(r)) and Q(r, r'; n) = -O,,,[a"a(r)n(r) OiS(r- r')]. 
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Observe that two factors of �9 appeared in the exponent due to each of the 
field factors F. The final result is quite analogous to the conjecture in ref. 
37. The argument we have outlined, in conjunction with the Zubarev- 
Morozov derivation of the hydrodynamic Fokker-Planck equation for 
local equilibrium systems, Ivl gives, in fact, a "physicist's proof" of our 
original hypothesis. 

Notice that the functional in the exponent of the RHS of (4.64) is one- 
half of what Onsager called the "dissipation function" ~(F,  F). ~ 1o. 36) In the 
present case its physical interpretation is very simple (cf. ref. 20, Section 
II.3.7). Since we saw in Eq. (2.60) of Section 2 that the Onsager matrix L 
is just the "conductivity tensor" associated to the "electrochemical field," 
the dissipation function is here precisely one-fourth of the Ohmic dissipa- 
tion by the inhomogeneous external field required to produce the given 
history. This is in addition to the finite dissipation E. J already occurring 
in the steady state (per unit time), so that we may interpret the quantity 
as the excess  dissipation (up to the additional factor of 1/4). Although we 
shall not show it here, the "entropy" S(n) may be recovered from this 
quantity by minimizing subject to a single-time constraint. This provides 
also a simple thermodynamic interpretation of that quantity as the least 
total excess dissipation, integrated over time, required to produce a given 
density configuration at time zero. Incidentally, notice that the term in the 
exponent is of the order of the volume of the system ~ � 9  only when 
integrated over times of order r ~ �9 The reason is that r is a "drift time 
scale" ~ e-~ in microscopic units, whereas dissipation occurs on the longer 
"diffusive time scale" ~ � 9  in microscopic units. Only for such a long 
range of time will the cumulative dissipation be O(1) in a unit macroscopic 
volume. 

From these results we see finally that the most probable history sub- 
ject to a given set of imposed constraints will be determined by a varia- 
tional principle of least  excess  dissipation, which generalizes the famous 
"Onsager principle of least dissipation" to fluctuations in homogeneous 
nonequilibrium steady states. One should be wary in interpreting such 
variational principles. The meaning of "constraint" here is "passive'rather 
than "active. ''~661 That is, the principle does not apply to experimental 
situations where the constraints are enforced by some external means, but 
rather to the--exceedingly rare!--subensemble of fluctuation histories 
appearing spontaneously in the steady state which satisfy the constraints. 
The most plausible application of the principle is instead to characterize 
the (absolute) most probable state without any constraints whatso- 
ever, especially when there are multiple solutions of the deterministic 
hydrodynamic equations and internal noise is the physical selection 
mechanism. 

822/83/3-4-11 
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5. CONCLUSIONS 

5.1. Outstanding Problems for DDS 

Without a doubt the most outstanding issue for general DDS left 
unresolved in this work is the validity of the drift-diffusion equation (2.61). 
The main concern is consistency with the long-range correlations discussed 
in Section 3.3. We have seen that these correlations are likely to affect the 
thermodynamics of homogeneous steady states of the DDS, making it 
shape dependent. Therefore, several of the properties implicitly assumed in 
the derivation of hydrodynamics appear to fail. The doubt centers mostly 
about the nonlinear drift-diffusion equation. As discussed in Appendix F, 
the correlation-function derivation of the linearized hydrodynamics appears 
to generalize to the "slow-decay" case and yields consistent results. 
Furthermore, as discussed in ref. 30 (also Section 3.3) the linear drift-diffu- 
sion equation with a white-noise force actually predicts the expected power- 
law decay if the "naive" Price FDR is abandoned. 

Even if the deterministic equation is valid, there is still a question 
whether the stochastic version (4.53) proposed in Section 4.2 gives the 
correct description of fluctuations in general. This nonlinear Langevin 
equation always leads to the naive FDR upon linearization. The general 
fluctuation-dissipation theorem which we proved in Section 4.1 established 
that this nonlinear Langevin equation is unique subject to the conditions of 
Hypothesis 2 in Section 4.2. If the long-range correlations occur, then one 
of these conditions must be false in general. We strongly suspect that it is 
the assumed form of the stationary distribution, Eq. (4.28), which is wrong. 
In fact, we have seen in Section 3.3 that there is considerable delicacy in the 
description of the steady-state fluctuations even for the homogeneous state. 
The function s(n), if it exists, may depend upon the way in which volumes 
go to infinity. This indeterminacy should be reflected in the stationary dis- 
tribution of the nonlinear Langevin equation, although we do not have a 
definite proposal alternative to Eq. (4.28). 

Perhaps it is fair to emphasize here the successes of our analysis: we 
have derived the drift-diffusion equation (2.61) by a fully microscopic pro- 
cedure, yielding in principle explicit expressions for all the quantities 
involved (entropy function, drift velocities, and Onsager coefficients). 
-Furthermore, we have established for this equation an H-theorem govern- 
ing the approach of solutions to homogeneous steady states. A nonlinear 
Langevin theory of fluctuations was proposed in which a multiplicative 
white-noise force is added to the Eq. (2.61), unique subject to the condition 
of having the desired stationary distribution (4.28). Although we lack a 
rigorous proof, we are quite confident that these results are correct 
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as stated in the "fast-decay" case. Examples of the latter type are known 
--such as the ASEP model of Appendix C--so  that these results have some 
nontrivial domain of validity. 

5.2. Remarks on the Nonequi l ibr ium Distr ibut ion Function 
M ethod 

Our analysis of the DLG models was meant in part to be a case study 
of the nonequilibrium distribution method of refs. 2, 3, and 5. One of the 
main questions we set out to answer in this work was: Where does the 
"nonequilibrium distribution fimction" method apply? Our primary focus 
was on the class of systems not in local thermodynamic equilibrium, but we 
believe that the discussion has clarified the conditions for its applicability 
also in the standard situations. The key requirement is the condition of 
"fast decay" of correlations in space-time, and when that holds the method 
seems to be well founded even if local states are not reversible. Therefore, 
there seems to be a basis to apply the method to a wide range of externally 
driven nonequilibrium systems, discussed further in Section 5.3 below. 

The primary caveat concerns the long-range correlations, which seem 
to be ubiquitous in such nonequilibrium systems. The slow correlation 
decay makes the derivation by the nonequilibrium distribution suspect for 
two reasons: (i) the integrals over space-time of correlations no longer 
obviously converge, and (ii) there is no longer necessarily a unique rela- 
tionship between density and chemical potential. It is not clear that these 
difficulties represent a failure of the method, since, as discussed above, it is 
possible that the drift-diffusion equation (2.61) itself is no longer valid. This 
is one of two alternative scenarios. The other is that the nonlinear equation 
is valid but requires a more refined derivation. A possibility worth explor- 
ing is the "level-2" approach of Zubarev and Morozov, ~7~ since that 
method does not assume a chemical potential as a function of density, but 
rather a chemical potential functional G[f] required to produce a given 
statistical distribution f[p]  in the space of density fields p(r). The func- 
tional relationship is elementary, G[f] = - l o g  f ,  so that no ambiguities 
from correlation effects appear at that level. 

5.3. Other  Appl icat ions 

Other possible applications of the methods discussed in this paper are 
reaction-diffusion systems (RDS) with local sources of reagents, plasmas in 
external electric and magnetic fields, granular flow under the action of 
gravity, etc. Any system with hydrodynamic behavior can in principle be 
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considered. Here we will just say a few words about the former two 
applications. The last subject is discussed in ref. 67. 

A hydrodynamic description of chemical systems is possible if the reac- 
tion rates are sufficiently slow, leading to reaction-diffusion equations. For 
example, see ref. 68 in the context of stochastic lattice gas models. The 
homogeneous case was already treated by Zubarev with the distribution 
function method in Section 23.5 of his book. ~2~ It should be possible to 
treat also the inhomogeneous case with diffusion by his methods. A crucial 
difference from the DDS discussed in the present work is the nonconser- 
vative character of RDS. The reaction-diffusion equation is not of the form 
of a pure continuity equation, but contains also sources and sinks. There- 
fore, a number of aspects of our previous discussion would need to be 
changed. It should be noted that rigorous results are available for 
hydrodynamic large deviations in the lattice-gas models of R D S .  169"70) 

These can provide checks of formal theory. 
Another interesting area of application is plasma systems, where the 

local equilibrium description also generally breaks down. Magnetohydro- 
dynamics (MHD) is the generally proposed hydrodynamic description. A 
comprehensive discussion in the context of transport equations is contained 
in ref. 71. Here we will just make a few remarks pertinent to the issue of 
Onsager reciprocity in plasmas, which is reviewed by Krommes and Hu. ~4~ 
It should be clear that our perspective largely agrees with theirs, since both 
works agree that OR is intrinsically connected with time reversibility. It 
may be true for other reasons that a transport matrix is symmetric, such 
as self-adjointness of a collision operator, <72~ but this is not OR. In fact, 
as we have emphasized, the dissipative Onsager matrix is always the sym- 
metric part, but this is not a consequence of OR and has nothing to do 
with time reversibility. We depart slightly from ref. 40 in regarding GOR 
as a rather formal generalization of the original OR, and not nearly as 
useful, since it relates a physical situation to an unphysical one, the time- 
reversed state. The latter cannot be prepared in the laboratory, since all 
reservoir dynamics would also need to be reversed. It is only theoretically 
possible to consider such reversal in the nonequilibrium steady state for 
some artificial dissipative dynamics of the Nos6-Hoover type or for ran- 
domly modeled heat baths with the stochastic notion of time reversal 
discussed in this work. 

APPENDIX  A. ARE S T A T I O N A R Y  MEASURES OF THE DLG 
NON-GIBBSIAN?  

The reversible ( E =  O) lattice gas is constructed in such a way that the 
canonical Gibbs measures 



Hydrodynamics Outside of Local Equilibrium 455 

L'A,  N ~ VNA, N 

are stationary for each N = 0 ,  1 ..... IAI, where the short-range Hamiltonian 
H A is prescribed in the detailed balance condition for the exchange rates. 
Under finite drive, E ~ 0, the canonical Gibbs measures will in general no 
longer be stationary. This leads to the question whether there exists some 
other Hamiltonian/4A such that the stationary measures are of the form 

A , N  N A N  

In finite volume, the answer is clearly positive, since the theory of finite- 
state Markov jump processes guarantees that for fixed N the stationary 
measure does not vanish on any configuration. Thus the question only 
becomes meaningful at infinite volume. Put differently, one has to under- 
stand h o w / ~ ,  depends on the volume A for a given E and n. 

Let P be a stationary, translation-invariant state of the D LG  in 
infinite volume. We consider the distribution of the configuration t/B in the 
bounded domain B conditioned on the outside configuration t/~. The for- 
mal requirement for P to be a Gibbs measure is that there exist a set of 
interaction potentials { JA : A c Z d} on finite subsets of the lattice, which is 
translation invariant, JA + x = JA, and summable, ZA ~o [A[ �9 [JA [ < ~ ,  
such that the conditional expectations are of the form 

P(r ls l r l~)=z~l ( ,?~)exp[  - ~ JAil A ] (A.1) 
Ar~B~IZI 

Here 1]4= 1-Ix~A ~lx- Essentially, (A.1) states that conditional expectations 
do not vanish and depend continuously on r/g. See ref. 26 for an extensive 
account of Gibbs measures and their properties. We only mention here that 
under suitable conditions on the potential--amounting to conditions of 
high temperature and low density--the Gibbs measure will be unique and 
exhibit exponential clustering. That is, for any local functions f ,  g on/2,  the 
truncated correlation will obey 

[ ( f  . r x g)  - ( f )  ( g)[ <<, Cf .  ge -)' Ixl (A.2) 

The constant Cr. g depends upon the functions f ,  g, but the decay constant 
y does not. Since there is evidence, discussed in Section 3.3, that this 
clustering is not obeyed by the stationary measures of the DLG, it is 
suggested that the invariant measures may not be Gibbs. However, even if 
the long-range decay could be established rigorously, this would not imply 
the measures are non-Gibbs. In other words, it would not be ruled out that 
the invariant measures are Gibbs states with long-range interactions (as 
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happens for dipole systems) or are critical, where such power-law decays 
are commonly observed. Nevertheless, there are situations in physics where 
non-Gibbsian measures, violating Eq. (A.I), do appear. A notable example 
is the "effective distributions" produced by some real-space RG operations, 
treated very exhaustively in ref. 73. Section 4.5 of that work also discusses 
nonequilibrium steady states. 

However, for the DLG we simply do not yet know the answer. This 
is related to the fact that we have no convergent cluster expansion for the 
stationary measures [from which presumably Eq. (A.I) would follow]. 
There is only one system for which nontrivial steady states have been con- 
structed. It is a mixture of "first-class" and "second-class" particles in 1D. 
First- and second-class particles both jump only to the right, respecting 
exclusion at each site. However, a second-class particle must always give 
way to a first class one. In this case, the stationary measures are non- 
Gibbs. 155~ For  B = { 0 }  it is checked by explicit computation that the 
continuous dependence (A.1) fails. 

APPENDIX B. CHEMICAL POTENTIAL AND STATIONARY 
MEASURES 

We argued in Section 2.1 that for the DLG stationary measures, if not 
more generally, a variation in the density amounts to a variation in the 
chemical potential only. Here we state a theorem which supports this claim 
under a reasonable assumption. Let us assume that we have found a 
measure P on (2=  {0. I} z'l which is time invariant for the DLG ( P ~ J )  
and invariant under spatial shifts (P e .~). This means that 

and 

I dP Lf =O (B.I) 

fdPrxf=fdP f, x ~ Z  a (B.2) 

for all local functions f .  In addition, let us suppose there exists a potential 
{ JA' A c Z a} which obeys the summability condition 

IAI-IJ.~ I < oe (B.3) 
,4 ~ 0 

such that for each finite B c Z a, 

P(q~l,,~)=Z,(,,~)-' exp[- y'. JA,, A ] (B.4) 
A ~ B r  
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Comparing with Eq. (A.1), we see that this amounts to P e N(J). A related 
notion is that of canonical Gibbs measures for the potential J, denoted 
N.(J), with conditional expectations 

P(,l~lns, rl,)=ZB(nt~,rlB,.)-lexp[--A~,~r J4,,'41 (B.5) 

The difference here is that the conditioning is also with respect to nB(q), the 
number of particles in B. The standard reference on this subject is ref. 79. 
The result we need for the D L G  is the following. 

T h e o r e m  1. Suppose for some summable potential J that 
J n 6 a n aJ(j) # ~ .  Then, J n 5 '~ ~ N.(J). 

This theorem, due to A. Asselah, extends a previous result of Kfinsch 1331 
for nonreversible spin-flip processes to DLG. Our main interest here is in 
its consequence, as follows. 

Corollary 1. Under the assumption of the previous theorem, if 
Q r 1 6 2  is also ergodic to space translations, then there exists a chemical 
potential 2 = JIol such that Q e fg(JIo I , {JA: IAI/> 2} ). 

This follows from the previous result based upon two well-known 
facts: for a translation-invariant potential J, (i) the boundary set exN.(J) of 
extremal elements of the Choquet simplex N.(J) is characterized as the sub- 
set of elements ergodic under the space shifts 126~ and (ii) ex~,.(J)= 
U~. ex,~r 2, {J}) (Theorems 5.14-5.15, ref. 79). Hence, we obtain our desired 
characterization of the invariant measures Q as Gibbs for the potential 
{J~: IAI/>2} and for some chemical potential 2. 

We here only sketch the proof of the theorem, which is technical 
because one wants to get away with minimal assumptions on the potential 
J. The main idea is to consider the time derivative of the relative entropy 
per unit volume, h(QIP). Since we are in the translation-invariant setup, 
this quantity is well defined. Moreover, because Q is assumed stationary, 

dh(QeL'lP)dt ,=o = 0  (B.6) 

Let us define for any pair of sites x, y the measure QA.,y by 

d( QA xy) f = f dQ (A • (B.7) 

for all local functionsf.  Writing out the time derivative in Eq. (B.6) explicitly, 
one deduces after a careful estimate of boundary terms the following result: 
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For each of the bounded sets of lattice sites B. = [ - 2 " ,  2"]d and each 
nearest neighbor pair ( x, y)  = ~,, = [ - 2" + n, 2" - n ] a, 

QB"(~ffa'r') = I d( PA"Y) 
dP(rl) Q(rls"' drip;) (B.8) 

Therefore, 

f j A'Yf dQ = j -d-ff f dQ 

for every local function f and every nearest neighbor pair (x,  y) .  The con- 
clusion is that 

d( Qzl x~) = d(PA -~) ( B.9 ) 
dQ(,1) ap(,l) 

for all I? e/2. On the other hand, if B is any bounded set of lattice sites and 
# (ns ,  r/~) is the a-field generated by the random variables he, 
{qx Ix e Be}, then a Borel function f is # (nn ,  ~/~)-measurable if and only 
if A x. y f = f  for all nearest neighbor pairs (x,  y )  with x, y e B. In that case 
it is easy to see that 

d(Q(. [nB, r/~) A x~) = d(QA xy) (B.10) 
dQ(qelnB, It~.) dQOt) 

Because any two configurations r/B, r/~ in B with nB, q~ fixed can be 
obtained by a sequence of nearest neighbor exchanges, 

q ~  = z l  x " Y "  �9 �9 �9 A x,  Y'IIB 

it follows from the combination of Eqs. (B.10) and (B.9) that 

QOl~lns, II~) = POIslns, rlB,.) (B.11 ) 

for all bounded sets B. Therefore, Q E %(J). 
There is a slightly different way to state the theorem, which may lend 

plausibility to its hypothesis. According to Eq. (2.67), the rates of the time- 
reversed process with respect to P e  J are given by 

d(eAx~') (B.12) 
e"(x, y, q) =e(x,  y, q~Y) dP(~l) 

which is defined for all q, if P is Gibbs. However, it is then true by the 
Theorem [cf. Eq. (B.9)] that the right-hand side is the same for all Q ~ J .  
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Therefore, the time-reversed process does not depend upon the stationary 
measure which is used to define it when one of the measures (and thus each 
of them) is Gibbs. 

It would be of interest--in particular in view of our discussion in 
Appendix A-- to  avoid the assumption of P being Gibbs altogether. 
However, if also non-translation-invariant states are permitted, then there 
must be some condition which excludes the "blocked states" Pb defined by 
the conditional expectations 

Pb(~B]~IB,')=Z~I('ltr)exp I -- ~ J-A~A+~qfl(E'x)~lx] (B. 13) 
A t a B ~ O  x ~ B  

where ] is the short-range potential defining the Hamiltonian in Eq. (1.3). 
The measures Pb are stationary and reversible. 

APPENDIX C. THE A S Y M M E T R I C  SIMPLE EXCLUSION 
PROCESS 

The asymmetric exclusion process (ASEP) is defined by the rates 

c(x, y, ~) =p(y  - x) IIx(1 - r/y) +p(x  - y)( 1 - r/x) r/y (C.1) 

where p(x)>/0 with compact support, p (0 )=0 ,  and Zxp(X)=  1 as a nor- 
malization. Thus after an exponentially distributed waiting time a particle 
at site x jumps with probability p ( y - x )  to site y provided this site is 
empty. If 

p ( x ) = p ( - x )  e pqE" (C.2) 

then Eq. (1.3) is satisfied with H =  0. For nearest neighbor jumps only, i.e., 
p(x) = 0  whenever Ixl > 1, Eq. (C.2) can always be fulfilled. In general, we 
do not impose such a restriction. The very welcome simplification of ASEP 
originates in the assumption that the exchange rates depend only on the 
occupation variables at sites x and y. For the ASEP a number of rigorous 
results are available which will be briefly reviewed here. 

The Bernoulli measures, i.e., the ~/x's are independent and ( ~ ) , , = n ,  
are stationary for the rates (C. 1 ). In fact, these are the only stationary and 
translation-invariant measures in infinite volume, t741 If Eq. (C.2) holds, 
then also the inhomogeneous blocked states 

822/83/3-4-12 
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and their translates are stationary. They play no role in hydrodynamics. 
The two-point function is given by S(x )=  ( r / , q o ) , , - n  2 = 6 x o n ( 1 -  ii) and 
consequently the structure function is given by o0(k)=n(1-n) ,  which is 
independent of k. Of course, the large-deviations equation (2.11 ) is satisfied 
with the entropy function s(n) = - [n log ii + ( 1 - i1) log( 1 - i1) + log 2] 
relative to density n* = 1/2. The average current is given by 

j(n) = 17( 1 - i i )  ~ xp(x) (C.4) 
x 

The rates of the time-reversed process are given by 

c r ( x , y , q ) = p ( x - y ) q . , , ( l - q y ) + p ( y - x ) ( 1 - q x ) q y  (C.5) 

which reflects the simplicity of the invariant measure. In particular, if 
Eq. (C.1) holds, the reversed rates also satisfy Eq. (C.1) with E replaced by 
- - E .  

The exclusion process is reversible i f f p ( x ) = p ( - x ) ,  in which case it is 
called symmetric. This corresponds to the equilibrium situation. The 
average current vanishes, Z x xp(x)= 0. Conductivity, Onsager matrix, and 
diffusion matrix are given by 

(qf l)  -1 a n  d = 17( 1 -- 17) �89 ~.. X , , , x l p ( x )  = L , n  = 1l( 1 --  n )  D , n  
x 

(C.6) 

The latter is independent of n and the hydrodynamic equation becomes 
linear. Note that we could impose j ( n ) = n ( 1 - n ) Z x x p ( x ) = 0  and still 
p(x) ~ p ( - x ) .  This is an example of a zero-current, but not time-reversal- 
invariant lattice gas. 

For the ASEP the Euler equations read 

0~n(r, r ) +  0,,,L,(n(r, r ) ) = 0  (C.7) 

which are established in full generality by Rezakhanlou] 751 with prior 
results detailed in ref. 20, Notes to Section 4.2. He proves that on the time 
scale ~ e-~ and the spatial scale ~e -1  in microscopic units a typical den- 
sity profile follows the unique entropic solution to Eq. (C.7). In particular, 
his results cover times beyond the first shock, and entropy may no longer 
be conserved. 

Next we turn to the Onsager matrix. The static part reads 

L,,,/stat - - _ _  n( 1 -- n) _sl ~ x , , x l p ( x )  (C.8) 
x 
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which is clearly symmetric. Note that the second jump moments are not  
truncated. For the dynamic part we use 

j(x) = �89 ~ yl 'p(y) ,l~(1 - r/x + y) - p (  - y ) ( 1  -Ply)/']x + y ]  

Y 

�9 r I j (x) = _~ ~ y [ p ( - y )  qx(1 - q x  +y)  -p(y)(1 -qx)/'/x + y "] 
Y 

�9 s I �9 j (x) = _~ [j(x) + j r (x ) ]  = ~ ~ y(p(y) + p ( -  y))(r/x --/']x +y) 
Y 

" a  I " 9 j (x) = ~: [j(x) -- j r(x)]  = 1 ~ y((p(y) _ p (  _ y))(r/x --llx +y)- 
Y 

and we note that 

(C.9) 

~ j"(x) = 0  (C.10) 
x 

Therefore 

- -  " i "  X _ _  A t  ^ t  r d y - _  dt (J,,,( )e'Ljl(O)) r z(n) j . , (n) j l (n ) 
~ m [  - -  i i  

�9 a t L  " a  T ^ t  ^ t  = dt ( j , , , ( x ) e  "j ( O ) ) , , - X ( n ) J m ( n ) j l ( n )  (C.11) 

Since the RHS of Eq. (C.11) is an autocorrelation, Ldyn/>0 as a matrix. 
Together with Eq. (C.8), this implies D(E)>~D(E=0) .  Thus the driving 
tends to increase diffusion. In fact, it could increase it so much that L = 00. 
According to the standard physical picture, c76" 771 this will be the case when- 
ever ](n) :f:0 and d =  1, 2. If ](n) =0 ,  then the integral (6.26) should exist in 
any dimension. 

In his thesis Xu ~781 considers the nonreversible ASEP with zero current 
](n) = 0  in one spatial dimension. Although not carried out explicitly, the 
results are asserted for any dimension. He proves that on the (microscopic) 
time scale e-'-, i.e., on the diffusive time scale, the density is approximated 
with probability one by the solution of the nonlinear diffusion equation 

0rn(r, r) = 0,,,D,,a(n(r, r)) 0pn(r, r) (C.12) 

with D , a = ( n ( 1 - n ) )  - l  (LSt~t+LdY"),,a from Eqs. (C.8), (C.11). Xu also 
provides a lower bound on D which in our notation reads Ldyn> 0. Note 
that while the ASEP is nonreversible, the Gaussian fluctuations in the 
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steady state are given by a reversible Ornstein-Uhlenbeck process. Thus, 
on the large scale reversibility is regained. 

Esposito et al. (EMY) ~6) study the ASEP with j (n) :~0 in three and 
more dimensions. One immediate difficulty stems from the difference in 
Euler and Navier-Stokes time scales, equivalently, from their different 
scaling under spatial dilations. EMY decided to adopt a procedure familiar 
from incompressible Navier-Stokes equations for fluids. They fixa reference 
density n* and take a small density deviation of order e, i.e., the chemical 
potential in the local equilibrium state (2.26) is of order e. Expanding 
Eq. (C.4), there is a constant drift velocity c(n*) = (I - 2 n * )  Zx  xp(x). Thus 
one is led to consider density deviations of order �9 in a moving frame of 
reference. EMY prove that the average density, on the Navier-Stokes time 
scale, 

lim E-l[~i ,(r--  e - lc (n  *) r, e - I t ) - -  n * ] =n(r ,  t)  (C.13) 
~ 0  

has a limit as E---, 0. The limit density satisfies 

F / 
O~n(r,t) O., | - - ( ~  x. ,p(x)  ) n(r, " * = t ) -+D, , / ( n  ) 0zn(r, r)]  (C.14) 

L \ -2  

with D,,t= (17(1-n)) -1 (LStat + LdYn)m I from Eqs. (C.8), (C.11). Again it is 
established that LdYn> 0. EMY also prove that, on the scales considered, 
typical density profiles follow the solution to Eq. (C.14). 

Finally, Landim et al. (LOY) 117) have studied more recently in the 
same model as EMY the problem equivalent to ours in the text. Namely, 
they prove that the average density g,(r, r) on the Euler time scale ~ e  -~ 
is given correctly to order e by the solution n,(r, t) of the drift-diffusion 
equation 

O~n(r, r) + 0,,jm(n(r, t ) ) =  e0mD,,,/(n(r, t)) 0In(r, t)  (C.15) 

with again D,,I= (n( 1 - n))-1 (L~tat + LdYn)m / from Eqs. (C.8), (C.11 ). This 
is proved in the precise sense that 

radar ~(r)[r~(r, t ) -  n,(r, t ) ]  = o(e) (C.16) 

for any nice test function ~b (i.e., ~ ~ H l ) and for each fixed t < To, the time 
of appearance of the first shock in the solution of (C.7) for the same initial 
data. This is a result of the same type, just slightly weaker, as that conjec- 
tured in Eq. (2.62) in the text. LOY prove no results for typical density 
profiles in this setting. 
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APPENDIX D. STEADY-STATE STABILITY AND THE FDR 
OF KRAICHNAN 

In a very interesting work, which is unfortunately little referenced out- 
side the turbulence literature, Kraichnan (8~ in 1959 derived a microscopic 
version of the FDR of 2nd type for a general classical dynamics 

dxi(t)/dt= Vi(x(t)) (D.1) 

with a conserved quantity, or "energy" H(x), and a Liouville theorem for 
conservation of phase volume. These guarantee that the "Gibbs measures" 
oc e -an are stationary for the dynamics. Under these same two conditions, 
Kraichnan established that the mean response function in the stationary 
"Gibbs state" 

Gu(t, s )=/6x i ( t ) \  (D.2) 
\ 6L.(s) / 

associated with a change in the external force fj  coupled as 

d x  i (t) = Vi(x(t)) +fAt)  (D.3) 

is determined by the FDR 

Gu(t,s)=fl(x,(t)'~xj(X(S)) ) (D.4) 

His two-page derivation is interesting because it shows that the FDR arises 
as the consequence of "stability" of the Gibbs state to coupling of two inde- 
pendent, identical systems in a general way preserving conservation of total 
energy H(x)+H(y) and a Liouville theorem for the coupled dynamics. 
This is very reminiscent of the standard argument for positive equilibrium 
response, or susceptibility, which we gave in Eqs. (2.23), (2.24). In fact, if 
the distribution on "histories" is regarded as a formal Gibbs distribution in 
one higher dimension, then the arguments are quite analogous. Kraichnan's 
method yieldg also the corresponding quantum KMS conditions and 
2nd-type FDRs in the context of stochastic Langevin equations. 

Actually, it is possible to derive Kraichnan's FDR in an even simpler 
way as a direct corollary of the classical KMS condition 

<{f,g} > =f l<g{f ,  H} > (D.5) 

in which {f,g} is the canonical Poisson bracket. Is''s2) This condition is 
easily proved at finite volume by a simple integration by parts, and also at 
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infinite volume for a suitable class of functions f ,  g. If one takes f = p j  one 
gets 

\ 8~,~/ (D.6) 

which is also true (by the same arguments) even if the dynamical vector 
field V is not Hamiltonian. It is easy to see that Eq. (D.6) with g=xi(t) 
gives Kraichnan's FDR. In fact, 

6xi(t) Oxi(t) 
~.(o) a.~ (D.7) 

because making the small perturbation to the force f j ( s ) ~ f j ( s ) + E f ( s )  is 
the same as making the small perturbation ~x)~-~i + E to the initial data. It 
is rather natural to see that Kraichnan's FDR is a consequence of the KMS 
condition, because the latter is a more general expression of "stability" of 
the state. It is known, for example, that the classical KMS condition (D.5) 
arises as a consequence of stability of the Gibbs measure to small perturba- 
tions of the Hamiltonian dynamics) TM 

In the case of a linear Langevin dynamics such as our Eq. (3.13), it is 
easy to check that Kraichnan's method gives a result 

( c~~ t) \ = 
~ /  (~;(t)  Xj(0))  (D.8) 

equivalent to Eq. (3.36). However, note that while Kraichnan's argument 
applies also to the nonlinear Langevin equations, like our Eq. (4.2), it does 
not yield a relation obviously equivalent to Graham's 2nd-type FDR in 
that context. At least it does not in Kraichnan's original form of the argu- 
ment. In fact, the two FDRs of Kraichnan and Graham for this case deal 
with the response functions to differently imposed forces. 

APPENDIX E. MICROSCOPIC CURRENT CORRELATIONS 
THE DLG MODELS 

For t > s we calculate that 

E,(J,,(x, t) J/(Y, s)) 

1 a 
= Jimo ~ Io duE,,(J,,,(x,t-s)Jt(y,u)) 

I N  
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=lime~o P,(dq) E" E"(Jm(x,t-s) J~).-~ duJl(y,u ) 

[ E,,r" r+',, j " lI0' ] =Jim0 1 P,,ldq) E"[ , ,,,tx, t - s - d ) ) . ~  duJ/(y,u) 

I llo~ =lim~o P'(drl)(A"'+J'-"-~LJ"'(x))(q)"d du(e'Lj~(Y))(q) 

= f P,,(d~l)(dy. y+~l el'-''~ LJ,,,(X))(I?)"Jr(Y, ~l) (E.1) 

We can say a few words to explain and justify each line. The first uses just 
stationarity. The second line introduces the conditional expectation E"(.) 
given that the configuration at time zero is r/ and the sigma algebra 
~ = a { N ( . ,  s): s <  t} of events prior to time t. In the next line, the Markov 
property 

E"(J,,,(x, t - s ) l~ )=ENI"6) ( J , , , (X ,  t - s - d ) )  (E.2) 

was used, along with the fact that 

N(., d ) =  qY' Y+e! 

with a probability going to one as d ~ 0 for the histories contributing in 
the expectation. [Only the histories for which ~o a du JI(Y, u ) # 0  contribute 
and the probability of an additional exchange in the time interval of length 
d goes to zero.] Finally, the definitions of the semigroup e 'L and the 
systematic current jm(X, q) are used and the limit 6--, 0 is taken. An entirely 
identical calculation gives for s > t that 

E,,(J,,,(x, t) J/(Y, s)) 

�91 ) (g.3) = P,,(dq)j,,(x,q).(Ax.x+~,,e 

Another contribution appears if s = t, which is calculated as 

1 ~ Io' l i m - ~  du du'E,,(J,,(x,u) Jt(y,u')) 
6-o~Jo 

1 
=d~..~ 6,,,, ~im.~ ~ E,,[ o~V,,... ,, + ~.,( [ 0, d ] ) ]  

=6~.yd,,,l(c(x, x + ~,,)),, (E.4) 
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We introduced the random variable JVx.x+~,,,([s, t]), which counts the 
absolute number of exchanges between sites x and x + ~,,, in the time inter- 
val l-s, t]. Altogether we see that 

E,,(J,,,(x, t) J/(Y, s)) = (c(0, ~,,)),, O,,n6xy6(t-s) 

-FO(t--s)( Ay, y+~,eL(t-s~J'm(x)" J/(Y)),, 

+ O(s-- t )(dx.  ~+~,eLl"-'~]l(y).j,,,(x)),, (E.5) 

On the other hand, using the identity (2.68), with 

f =  e'LJ,,,(O) " (qx -- r/~ + a,) 

we can rewrite this as 

E,,(J,,(x, t) JI(Y, s)) = (c(0, ~,,)),, O,nOxy6(t - s )  

+ O(t -s)(eL{'-s~j, , (x)-  j ; ( y )  ),, 

+O(s-t)(eL~"-'~jl(y). j~, ,(x))  . (E.6) 

This is exactly the result claimed in Eq. (3.56) of Section 3.3. The same 
identity is derived in ref. 50 by means of the Ito formula. 

APPENDIX F. K A D A N O F F - M A R T I N  APPROACH TO 
H Y D R O D Y N A M I C S  IN DLG 

We shall repeat the argument in Appendix 3 of the KLS paper, but 
making only the weaker regularity assumption that 

x(n, f~)--- lim S,,(k) (F.1) 
k ~ O  

exists. By integration we obtain distinct relations n(2, k) between density 
and chemical potential, depending upon the wavevector direction of the 
density modulation in space. Since it is still supposed to be true that 

S(k, t) 
exp[i(c �9 k) t - (k.  D.  k) t] (F.2) 

S(k) 

at long times and low wavenumbers, we may still define 

k.c(k,)-lim ,lim 1 O IS(k, t)] (F.3) 
k -o  t0--k L S(k) J 
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and 

k.D.k=Jim ~ ,lim -I - e(f{))'- t'-} _ -~-{0@_, [ S ( k ' t ) ]  ([{. 
[ S(k) J 

(F.4) 

Let us examine each of these in turn. 
For the first, we calculate that 

k.e(k)=Jim ~ lim 1 I e.k.x( [ . . . .  t S ( k ) ~  .x) E,(N(x,t)N(O,O)) r (F.5) 

if we assume that limits such as 

lim ~" e ikxxmE,,(N(x, t) N(0, 0)) r 
k ~ O  

x 

exist and are finite. In that case, all the contributions from the derivative 
O/Ok of S-~(k) vanish. Then, using the conservation law, we obtain 

k. e (k )=  �9 ~im ~ lim. - ds ~'. e'k'~E,,(J(x, s) N(0, 0)) r 
~ ~ 0 x 

f~ [Jimo~eikx<j(X)qo>T,l (F.6) 
x 

In fact, we shall show that c is actually f~-independent under the assumption 
that there is a unique stationary state P, for each density n. The result 
follows from the chain of equalities 

r k ) - z ( n ,  [~ ~ ~ j(0) exp 2 ik.x 
x / / . / ) . = 0  

1 0 

.01 
~ ( n )  (F.7) 

Therefore, the same formula holds for c as before. 
Actually, the previous argument applies generally 

"f~-dependent Zwanzig-Mori spaces" via the inner product 
if we define 

<A[B>,,, ~ = ~im ~ d k XE,,(A(x) B(0)),, r (F.8) 
x 
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and establishes that 

02 
( A I N )  ,,, ~ = z(n, f~) ~ (, l) (F.9) 

Therefore, all of the f~ dependence is through the susceptibility in this 
expression. Furthermore, if we assume an ergodic property of the 
dynamics, then it is generally true as well that 

a2 a~ 
,lim (A(t)IB),,. ~ =z(n, k) -~n (11) ~ (,i) (F.IO) 

The proof is just that 

lim (A(t)IB),,,~ 

= lim lim ~, eikxE.(A(O, t) B(x, 0)),~ 
k ~ O  t ~  ,~ ,  

x 

=l im ,lim ~[z-~)E, ,(A(t)exp(Oy' ,e~kXB(x)))  j 
k ~ O  ~ ~ x 0 = 0  

a A(n(O, f~)) o o 00 = 

aA an f~) o = o = T n  ( n ) ' ~ ( O ,  

&4 
- -  7 , ,  t,,) �9 E NIoll , ,  

x 

a3 a~ 
=x(n, k) ~ In) ~ (n) (F.11) 

(The ergodic assumption was used in the third line.) 
From these considerations it seems reasonable to make the following 

hypothesis: namely, that ( A I B) ,,. ~ is independent ofk whenever A, B ~ {N} l 
The motivation of this hypothesis is that only the conserved variable (here, 
the particle number) is expected to show long-range correlations and the 
orthogonal variables (the "fast" subspace) should exhibit rapid decay. This 
hypothesis can be restated as saying, for arbitrary variables A, B, that 

^ 

( A I B),,. ~ - z(n, k) ~.. (n) (,7) 
( J l ' /  
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will be k independent. In particular, under this hypothesis the covariance 
of the "fast component" of the microscopic electric current 

R,, , -~f  dt (J,,,(t)lJi),,.i-z(n, fO-~n (n)~(n) (F.12) 

is constant (i.e., f~ independent) for k ~ 0. We can now calculate the diffu- 
sion tensor defined in Eq. (F.4) as 

f~. D- f~ = lim l i m  1 [ ~ ~, ei k.x(f~ . x)2 

x E,,(N(x, t) N(o, 0)) r -  (f~" e(n)) 2] 
J 

= lim lim /~,,,/~/ ds' 
k~O t~  +~s 

[ 1 Eeik.x~n(jm(x,s) J/(O,s,))T__cm(l,)Cl(H) ] •  
l I + ~  

- -  c - . .  

or, 

k. D(n). k - ~" R(n). k (F.14) 
Z(n, f0 

Observe that Eq. (F.13) is precisely a microscopic version of the FDR 
(3.67) obtained at the macroscopic Langevin level in Section 3.3. It is a 
weaker version of the Price noise-diffusion relation consistent with the 
long-range density correlations in the steady state. 
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